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Abstract

In this report we will briefly discuss about degrees of freedom in the

Interference channels with rank deficiency. The rank deficiency can be in

the individual point to point channels of Interference model, like MIMO

Channels, or in the entire system, like Interfering SISO Channels. For the

case of rank deficiency in the point to point MIMO Interfering Channels,

the achievability of optimal dof has been established while the same has

not been done so far now for the SISO case. We will see some observed

difficulties in the existing work which tried to achieve optimal dof in the

SISO case.

Introduction

Degrees of freedom (dof) is the pre-log factor which appears in the Channel capac-

ity expression. In other words dof determines the number of parallel (independent)

channels in which we can decompose the complex wireless channel. Therefore, for

a point to point MIMO channel we can say that the dof is equal to rank of the

channel matrix. When inter-dependencies arise in the wireless channel like absence

of rich scattering or correlation between the antennas, the rank deficiency occur

in the Channel. Interestingly, if we consider a network topology in which we have

given end-to-end transmitters and receivers but not the internal structure which

includes relays or routers, switches and somewhat unknown network connections

between them. This network structure can be looked in the wireless domain as a

SISO interfering channel but with individual channels not being entirely indepen-

dent or in other words, some deficiency in the rank of the overall channel. It has
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Figure 1: 2 user Rank deficient MIMO IC

been already established that the dof of Interfering Channel (IC) with full rank

has a maximum value of K/2. While the achievability of the same optimal dof for

the rank deficient case is still an open problem. We will appreciate this problem

by starting from MIMO rank deficient IC and then moving on to the SISO IC case.

Rank deficient MIMO IC

The optimal dof of rank deficient MIMO IC with 2 and 3 user case with asymmetric

setting has been established in [1] and it is generalized for K− user case using

asymptotic interference alignment in [2]. We will touch upon some ideas involved

in achieving optimal dof in the case of 2 and 3 user case.

Consider a 2 user example as shown in the Fig. 1 where we have taken 6 an-

tennas at transmitter T1 and 5 antennas at another transmitter, T2. We have

2 receivers R1, R2 with 4 and 3 antennas respectively. The individual channels

are rank deficient and the corresponding ranks are as shown in the figure. The

transmitter T1 is going to make first 3 inputs 0 and transmit rest 3 because rank

of the direct channel is 3. The receiver R1 is going to discard the first output

and use only last 3 antennas. The transmitter T2 is going to make 4 − 1 = 3

input entries 0 in order to cause no interference at the receiver R1. This can be

done by setting the inputs from 2 to 4 as 0. The first output of the receiver R1

is going to be discarded anyways, hence T2 can transmit in the first dimension.

Thus, R1 will now have 3 interference free dimensions and its dof would be 3. For
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the receiver R2, since the transmitter T1 is not causing any interference in the

first 2 dimensions as the rank of this interference channel itself is 2, we will have 2

interference free dimensions at the receiver R2 and its dof would be 2. Therefore,

in this system we will have a total dof of 3 + 2 = 5.

In [1], a general expression has been provided for any transmitter-receiver an-

tenna combination and the ranks of the channels. The achievable optimal bound

is written as

dof ≤ min{d11 + d22,M1 +N2 − d21,M2 +N1 − d12}

where Mi, Ni is the number of antennas at the ith transmitter, receiver and dij is

rank of the channel from jth transmitter to the ith receiver. In our example we

have

dof ≤ min{2 + 3, 6 + 3− 2, 5 + 4− 4}
= 5

which is what we have seen in the discussed achievable scheme. Next, we will

discuss how achievability is established for the optimal dof in 3-user case.

Let us consider a case in which every node in the system has equal number of

antennas, M , and all the direct channels have rank of d0 and the cross channels

of the form Hk(k+1),Hk(k−1) have rank d1, d2 respectively. The achievability of the

optimal dof is based on the design of the transmit vectors which depends upon the

available dimensions decided by the variation of rank of the channels in comparison

of M .

At each receiver we will have a desired signal and two interference terms. The

transmit vectors are therefore designed to either cancel the interference or to align

the interference so that the effective interference dimensions can be reduced. The

transmit vectors at the kth transmitter can be classified into four categories namely

1. VZa
k is the trasmit vector which lies in the null space of the H(k−1)k and

hence it will cancel the interference received at the (k − 1)th receiver from

kth transmitter.

2. VZb
k lies in null space of the H(k+1)k and hence it will eliminate the interfer-

ence received at (k + 1)th receiver from kth transmitter
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Figure 2: Overlap of Null spaces
Figure 3: Overlap of Interference

spaces

3. VZc
k lies in the overlap of null spaces of H(k+1)k and H(k−1)k, hence unlike

above two vectors which eliminate interference at one receiver but cause at

another, this transmit vector will not cause any interference at any receiver.

This beamformer may or may not exist depending on rank of the interfering

channels.

4. VA
k is responsible for aligning the interference spaces at the receiver so that

the effective dimensions occupied can be reduced. The existence of alignment

vectors is also governed by rank of the interfering channels. We can say that

if d1 + d2 > M then we will have overlap in the interfering channel spaces

and hence it is possible to design these vectors.

It can be easily seen that dimension of the desired signal is going to be dim(VZa
k )+

dim)(VZb
k ) + dim)(VZc

k ) + dim)(VA
k ) while dimension of interference is same as de-

sired signal expression except for the dim)(VZc
k ) term as VZc

k by definition does

not cause interference at either of the receiver. While deciding the dimension for

these transmit vectors it has always been taken care that the sum dimensions of

the interference and desired signal is always equal to M so that they can be sep-

arated at the receiver. A variety of cases are possible depending upon the values

of d1 + d2 as compared to M .

The design of the zero-forcing vectors is as follows: For a d1 dimensional inter-

ference channel, there will be M−d1 null space dimensions and hence dim(VZa
k ) ≤

M − d1, similarly dim(VZb
k ) ≤ M − d2. When the value of d1 + d2 ≤ M then the

overlap dimension of two (M − d1) and (M − d2) dimensional nullspaces will be

(M − d1 − d2) which is the maximum possible dimension of VZc
k . For the case

when d1 + d2 > M there will be no overlap of null spaces hence dim(VZc
k ) = 0

but there will be an overlap in the interference spaces of dimensions d1 and d2 as

(d1 + d2 −M) which is what the maximum possible value of dim(VA
k ).
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The alignment vectors are designed to exploit the overlap of the interference

spaces to reduce the effective interference dimensions. A certain amount of in-

terference from one transmitter can be shadowed by the interference from other

transmitter if they are aligned to span the same subspace. The above statement

can be written mathematically as

span(H21V
A
1 ) ⊆ span(H32V2)

span(H32V
A
2 ) ⊆ span(H31V1)

span(H13V
A
3 ) ⊆ span(H12V2)

where we can see that the interference dimensions beamformed by VA
k always span

the same subspace as spanned by the interference from other transmitter and thus

will cause no more harm. This scheme achieves the optimal dof for 3 user case and

the outerbound can be written as

dof ≤ min

{
d0,M −

min(M,d1 + d2)

2

}
Rank deficient SISO IC

While we have seen the case of rank deficiency in the individual MIMO channels,

however, rank deficiency can also arise in the combined SISO IC. Such deficiency

will create dependencies between direct and cross channels of the users in the

system. Consider a K user SISO IC model in which rank of the IC channel is d

where d < K. While this problem is not solved till now entirely, but [3] has moved

in this direction and showed some difficulties in achieving the outer bound of K/2.

We will see some of its results but before that lets introduce some mathematical

preliminaries.

Variety:

We have a set of multivariate polynomials and rational functions in the vari-

ables t1, t2, ...tn, which we denote as C[t1, t2, ..., tn] and C(t1, t2, ..., tn) respectively.

For any polynomials f1, f2, ..., fm ∈ C[t1, t2, ..., tn], the affine variety generated by

f1, f2, ..., fm is denoted by set of points at which the polynomials vanish i.e.

V (f) = {t ∈ Cn : f(t) = 0}
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Ideal

A subset I of C[t1, t2, ..., tn] is called an ideal if it has the following properties:

1. 0 ∈ I.

2. If f1, f2 ∈ I, then f1 + f2 ∈ I.

3. If f1 ∈ I and f2 ∈ C[t1, t2, ..., tn], then f1f2 ∈ I.

Likewise, for any set A ⊆ Cn, the ideal generated by A is defined as

I(A) = {f ∈ C[t1, t2, ..., tn] : f(t) = 0,∀t ∈ A}

For any ideal I, the affine variety generated by I is defined as

V (I) = {t ∈ Cn : f(t) = 0∀f ∈ I}

Having this knowledge we will see that how dof bounds can be proved for any

channel rank d 6= dK/2e. From here we will assume that dof outerbound of dK/2e
is achievable if d = dK/2e. First consider the case of d < dK/2e. This implies

that we can select 2d users out of K and from our assumption we can achieve dof

of 2d/2 = d in this system. A symmetric dof for each user can be achieved if we

cycle the subsets of users. We will have a total possibilities of
(
K
2d

)
out of which

a particular user is going to be active in
(
K−1
2d−1

)
and achieves 1/2 dof. Therefore,

overall dof achieved by a particular user through all cycles in going to be

dof =
1

2
×

(
K−1
2d−1

)(
K
2d

) =
d

K

Next consider the case when d > dK/2e. It has been shown in [3] that if

the direct channels cannot be expressed as rational polynomial functions of cross

channel terms, then by using asymptotic interference alignment the dof outerbound

of K/2 can be achieved, arbitrarily close. Moving forward, we know that for a rank

d channel matrix we will have the value of determinant of all the (d+ 1)× (d+ 1)

matrices 0. Using concepts of variety and ideals we can say that these determinant

polynomials generate an affine variety, Vd. Without causing any harm to our

arguments, it can be assumed that d = dK/2e + 1. Therefore, we have a variety

VdK/2e+1 and an ideal generated by this variety, IdK/2e+1 = I(VdK/2e+1). It can be

said that

VdK/2e+1 ⊆ VdK/2e
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which in turn implies that

I(VdK/2e) ⊇ I(VdK/2e+1)

It can be argued that since we have taken d = dK/2e + 1, we can express

direct channels as rational function of polynomials of cross channels, or in other

words we have a polynomial f1, A(S)Hkk − B(S) which always evaluates to 0.

Here, S denotes set of cross-channel terms and A(.), B(.) are some polynomial

functions. Since f1 = 0 under affine variety VdK/2e+1, therefore f1 ∈ IdK/2e+1 and

hence f1 ∈ IdK/2e. But this contradicts the assumption that we can achieve a

dof of dK/2e when d = dK/2e. Thus we can say that for channels with rank

d = dK/2e + 1, the achievable dof cannot exceed dK/2e. Similar arguments can

be applied for all d > dK/2e and we can finally write the dof expression for any

rank d as

dofK(d) ≤ min(d, dK/2e)

Now, that we will come to the main problem of achieving dof of dK/2e when

rank, d = dK/2e. We will first try to see that if this is even achievable for some

channel combinations. Let us start this discussion by stating that a generic K×K
Gaussian rank deficient channel, H can be mathematically expressed as

H = F×G

where F and G are K×d and d×K matrices with entries from circularly symmetric

Gaussian distribution. To start with, we will consider time varying channels and

take two time slots. If each user can achieve 1 dof in these 2 time-slots then we

will have a dof of 1/2 per user. In the first time-slot we have channel matrix as

H1 = F1G1 and the received signal at the kth receiver can be written as

y
[k]
1 = h

[k]H
1 X + n

[k]
1

where h
[k]H
1 is the kth row vector of H1 matrix and X is K × 1 transmit vector,

X = [xH1 , x
H
2 , ..., x

H
K ]H with xk as desired symbol for the kth receiver. Similarly,

for the second time slot we can write

y
[k]
2 = h

[k]H
2 X + n

[k]
2

In order to achieve dof of 1 in these 2 time-slots, the receiver should be able

to eliminate the interference free from linear combination of these 2 receptions.

Therefore, we can write for the first user as
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y
[1]
1 + λ1y

[2]
1 = h

[1]H
1 X + λ1h

[1]H
2 X + n

[1]
1 + λ1n

[1]
2

= (h
[1]H
1 + λ1h

[1]H
2 )X + ñ[1]

(a)
= α1e

H
1 X + ñ[1]

where ej is the standard unit vector with all zeros except at the jth place and

we have written (a) because of the requirement of the user−1 to eliminate all

interference from linear combination of two time-slots receptions and reduce it to

the desired signal only, in this case x1. The constant α1 is effective channel gain

after linear processing. We can write the similar equations for channel requirements

for all the users as

h
[1]H
1 + λ1h

[1]H
2 = α1e

H
1

h
[2]H
1 + λ2h

[2]H
2 = α2e

H
2

...

h
[K]H
1 + λKh

[K]H
2 = αKeH

K

which can be represented in matrix form as

H1 + ΛH2 = A

where Λ and A are the diagonal matrices with entries λi and αi, respectively.

Using the decomposition of H1 and H2 we can further write

[
F1 ΛF2

] [G1

G2

]
= A

which implies

[
F1 ΛF2

]
= A

[
G1

G2

]−1
Therefore, for a given random Λ and A we can first construct a full rank matrix

G, take its inverse to get right hand side of the above equation and correspondingly

select F1 and F2. Thus we have a family of rank deficient channels through which

every can achieve a dof of 1/2.
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Conclusion

We have seen examples of rank deficiency in 2 and 3−user MIMO IC and schemes

which achieve the dof outerbounds. For the rank deficient SISO case we have

seen that the dof outerbounds can be achieved if we assume that dof for rank,

d = dK/2e is achievable. For this case of interest, we have seen that a family of

channels exist which can achieve 1/2 dof per user with linear processing. A future

work could be to explore schemes that can achieve the dof outerbound for generic

rank dK/2e channel.
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