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Deciphering patterns from the data to make some inference rely on the assumption
of knowledge of the complete system which is seldom true. The lack of complete
knowledge could be due to the experimental device limitation, or due to phenomena
not known. Even with big data sizes, the presence of unknown contributors may
not be neglected due to complex interactions of the observed system with environ-
ment. For example, systems like brain, social networks, gene-regulatory networks,
and physiological signals have interaction from unknown phenomena which is most of
the times not expected. In the first part of this work, we study the incorporation of
unknown unknowns (UUs) in the context of non-stationary non-Markovian processes.
We then show the applications in the domain of brain electroencephalogram signals,
spiking neuron networks, and model-based reinforcement learning. Using the concept
of UUs, we also show applications in the brain imagined task prediction problem with
a complete redesign of the existing approach.

Next, we will see that the data originating from the complex systems can be ef-
ficiently modeled using the partial differential equations (PDEs). In that pursuit,
we will explore non-stationary fractional diffusion equations to model a variety of
phenomena. As the complexity of underlying phenomena increase and with multi-
dimensional data, obtaining solutions to the PDEs can be very time exhaustive and
impractical. We propose a data-driven approach to solve PDEs by learning the solu-
tion operator with quick inference by a neural network forward pass. The proposed
operator architecture is PDE agnostic, thus enables to learn without knowledge of
the underlying phenomena. We demonstrate applications for various PDEs spanning
domain of complex fluids, traffic flow, shallow water waves, and viscous fluid motion.

Finally, a fusion of complex networks and PDEs is studied in the context of discrete
events data. To date, mathematical tools to decode network dynamics and structure
from very scarce and partially observed neuronal spiking behavior remain underde-
veloped. Large neuronal networks contribute to the intrinsic neuron transfer function
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and observed neuronal spike trains encoding complex causal information processing,
yet how this emerging causal fractal memory in the spike trains relates to the network
topology is not fully understood. Towards this end, we have studied a novel statistical
physics inspired neuron particle model that captures the causal information flow and
processing features of neuronal spiking activity. Relying on synthetic comprehensive
simulations and real-world neuronal spiking activity analysis, the proposed fractional
order operators governing the neuronal spiking dynamics provide insights into the
memory and scale of the spike trains as well as information about the topological
properties of the underlying neuronal networks.
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Chapter 1

Introduction

The machine learning methods by treating the data as finite-memory, stationary
struggles to learn patterns from complex real-world sources which has non-Markovian,
long-range memory components. Instead of assuming the data is random, we show
that a lot of real-world signals possess structured patterns. Combining the efficiency
of both machine learning and control systems, we discuss new ways to represent data
streams in the presence of unknown unknowns (UUs) as well as decode new inferences
out of them. Depending on the data format, the modeling strategies change as well
as the definition of UUs relevant to the problem. For example, while modeling the
continuous data streams recorded from brain with the aim of accurate modeling, the
UUs evolve as contribution of artifacts, unobserved parts of the brain for accurate
predictions of the observed phenomena. On the other hand, while modeling rare
spiking events with the aim of explaining the observed phenomena, the UUs could
be the gigantic network acting behind the curtains, and developing models to extract
the information, for example, unknown network topology could be useful. Overall,
different scenarios demand different modeling tools and the modeling interpretation
of UUs change accordingly. In this thesis work, we take two different viewpoints to
study various kinds of data-streams: (i) Complex networks and (ii) partial differential
equations, and we show that both approaches go hand-in-hand and are useful in
utilizing UUs for accurate modeling or obtaining inference.

1.1 Complex Networks for Time-varying Data

Time-varying complex networks (TVCNs) provide a comprehensive mathematical
framework for modeling complex biological, social and technological systems. In this
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work, we interpret complex systems (networks) (Barrat, Barthélemy, and Vespig-
nani, 2008; Gao et al., 2014) as graphs comprising of nodes interacting spatially and
temporally, i.e., both inter and intra dependence, with node activities available in
the form of time-series. Examples include brain dynamic activity (Xue, Rodriguez,
and Bogdan, 2016; Gupta, Pequito, and Bogdan, 2018b; Gupta, Pequito, and Bog-
dan, 2018d), the gene expression and interactions (Wang et al., 2016; Lopes, Cesar,
and Costa, 2011), the bacteria dynamics (Arafa, 2013; Rihan et al., 2014; Koore-
hdavoudi et al., 2017), or the swarm robotics (Couceiro et al., 2012; Couceiro and
Sivasundaram, 2016). Many such time varying complex (biological) networks exhibit
complex spatio-temporal interactions. For instance, the short- and long-range interac-
tions among neurons contribute to the emergence of long-range memory and fractional
dynamics at macroscopic brain regions. Moreover, the non-stationarity which arises
in most of the bio-physical processes require modeling techniques supporting inter-
action among variables in space and time. A computationally efficient strategy for
constructing compact yet accurate mathematical models of TVCNs relies on describ-
ing the self-activity of nodes in TVCNs through fractional order operators (Moon,
1992; Lundstrom et al., 2008; Werner, 2010; Turcott and Teich, 1996; Thurner et al.,
2003).

For the first part of this thesis, we are motivated by the recent success of fractional
order dynamics in modeling spatiotemporal properties of physiological signals, such
as electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG)
and blood oxygenation level dependent (BOLD) just to mention a few (Magin, 2012;
Baleanu, Machado, and Luo, 2011). Despite these modeling capabilities, there is
one main limitation that continues to elude scientists and engineers alike. Specifi-
cally, complex networks such as the brain, whose nodes will dynamically evolve using
fractal order dynamics, are often observed locally. Meaning that some of the dy-
namics assessed by the models are not only due to the local interaction, but might
be constrained by unknown sources, i.e., stimuli that are external to the considered
network. However, due to the experimental limitations, (e.g., resource constraint,
limiting probing capabilities1), only a part of the complete CN is available at most
of the times. Consequently, we propose a series of models that enable us to account
for the existence of such unknown stimuli as well as latent nodes with some known
properties, and determine the model that best captures the local dynamics under
such stimuli. To be able to successfully model the limited finite-dimensional observed
phenomena, we fix the degrees-of-freedom (DOFs) of the unknown contributors be-
forehand, and set it to a value less than the observed dimensions, as we discuss in
Chapter 2. Observe that this enhances the analysis of these systems once we have an
additional feature (i.e., the stimuli) that can be the main driver of a possible abnormal

1As Wigner argued once: ‘It is the skill and ingenuity of the experimenter which show him
phenomena which depend on a relatively narrow set of relatively easily realizable and reproducible
conditions’ (Wigner, 1960).
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behavior of the network (Norden and Blumenfeld, 2002). In all such conditions, we
have only partial information regarding the complete TVCN, and we wish to better
predict the observed data in the presence of latent fractional dynamics as well as
unknown drivers.

There is a rich literature regarding study of networks with latent nodes. To list
a few, the importance of realizing the inclusion of latent nodes in the context of
linear time invariant (LTI) systems has been explored in (Jalali and Sanghavi, 2012;
Anandkumar et al., 2013; Geiger et al., 2015), for Bayesian networks in (Elidan,
Nachman, and Friedman, 2007), and graphical models with Gaussian distribution of
nodes in (Chandrasekaran, Parrilo, and Willsky, 2012), complex systems (Marsili,
Mastromatteo, and Roudi, 2013). The Markovian assumption helps in the case of
LTI systems, and in some sense to uncover the latent nodes. However, the LTI
systems are not sufficient to accurately model physiological signals, such as EEG,
ECG and BOLD (just to mention a few) due to their inability in capturing the long-
range memory property of the biological signals. Continuing with the assumption of
limited DOFs of the UUs, we further improve the model by taking a few fixed number
of ‘latent’ nodes as fractional dynamics with only the knowledge of their fractional
derivative coefficients. Through our experiments we show that this further improves
the modeling prediction accuracy of the observed system. Next, we acknowledge that
sensor placement, either in complete knowledge or in the latent setup, is crucial for
the model estimation.

Apart from the electrical recording available in the form of EEG, understanding the
microscopic brain activity (mechanisms) in action and in context is crucial for learning
and control of the neuron behavior. Towards this end, the main purpose of studying
neuron activities is to identify neuron history process and their inter-dependence in
the ensemble neural system. The technique of multiple electrodes makes it possible
to record and study the spiking activity of each neuron in a large ensemble system
simultaneously (Wilson and McNaughton, 1993; Brown, 2005; Lewicki, 1998). At
first, the study was mainly focusing on single neuron behavior and the bivariate re-
lationship of neuron pairs or triplets, while ignoring the possible ensemble neuron
effect (Krumin and Shoham, 2010; Brown, Kass, and Mitra, 2004; Okatan, Wilson,
and Brown, 2005). Later, the multivariate auto-regressive framework was introduced
with more complex neuronal connections. Multiple covariates affect the spiking activ-
ity of each neuron in the system (Kim et al., 2011). The most common covariates are
the intrinsic, extrinsic and other parameters related to inputs and the environmental
stimuli. Previous attempts have been made to analyze the impact of spiking history
and the interaction with other neurons (Truccolo et al., 2005; Okatan, Wilson, and
Brown, 2005; Kim et al., 2011).

From the mathematical perspective, the neuron activity and their spike trains are
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stochastic in nature and their statistics are time-varying or non-stationary. Tradition-
ally, the neuron activity is modeled by a discrete time series event of point processes
(Karr, 2017; Brown, 2005; Brown, Kass, and Mitra, 2004). The likelihood method
for multivariate point process is a central tool of statistical learning to model neuron
spiking behaviors. The likelihood function is a variate of the parameters for the point
process. These parameters are estimated from the experimental data with statistical
tools (Brown, Kass, and Mitra, 2004). However, these models are concerned with
the closed system assumption and does not involve the effects of the unknown ex-
ternal sources. The adoption of UUs is also applicable to the neural spiking system.
Prior work on the neural activity modeling assume that all neurons in the system can
be monitored and their activities are available for mathematical modeling (Okatan,
Wilson, and Brown, 2005). In addition to the intrinsic and external covariates, we
add the contribution of UUs covariates and provide a joint estimation method of the
system parameters as well as UUs.

Finally, in the current work, we note that the sensor selection helps in not only re-
ducing the deployed sensors but also helps in placing the sensors in the environment
for better model estimation. The set functions chosen as objectives can have arbi-
trary structures that are problem-dependent. Nonetheless, in a quest to quantify
sub-optimality in such discrete optimization problems, we often try to unveil struc-
tures (i.e., subclasses of functions with specific properties) that enable us to either
develop efficient algorithms to determine the optimal solution, or to approximate the
solutions when the problem is NP-hard with sub-optimality guarantees. Within this
class, there was a surge for submodular functions, whose approximate solution can
be determined by a greedy algorithm that determines a sub-optimal solution by re-
cursively adding the element which maximizes the objective. Also, this algorithm
is known to achieve a constant performance bound (Feige, Mirrokni, and Vondrak,
2011; Nemhauser et al., 1978; Sviridenko, 2004; Buchbinder et al., 2012), which can
be improved by using the concept of curvature (Conforti and Cornuejols, 1984; Iyer,
Jegelka, and Bilmes, 2013). Notwithstanding, some objectives of interest do not pos-
sess such properties (Bian et al., 2017), e.g., Bayesian A-optimality, determinantal
function, subset selection in R2 objective (Das and Kempe, 2011), and sparse ap-
proximation (Das and Kempe, 2008; Krause and Cevher, 2010). Regardless, it has
been proposed to use the greedy algorithm, which empirically leads to a good per-
formance. Is this a coincidence, or are there implicit features that justify some of
the empirical performances obtained? This is the quest we also pursue in the present
work by defining a class of approximate submodular functions, and then quantifying
the performance guarantees using a deviation parameter. Next, we discuss the other
possible modeling aspects where the inference about the UUs could be obtained by
observing a limited phenomena.
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1.2 Partial Differential Equations for Time-varying
Data

In the next part of the thesis work, we will be exploring the partial differential equa-
tions (PDEs) frameworks for modeling and solving real-world problems. We discuss
two aspects of it, namely, (i) modeling PDEs, and (ii) solving PDEs. In the mod-
eling part, we developed a set of techniques to represent the observed phenomena
using PDEs and then obtain inference about the underlying mechanism. Modeling
the data using PDEs also enable us to proceed in the direction of UUs contribution,
as we discuss in Section 1.3. For the solution part, we will present the novel deep
learning techniques to solve the PDEs efficiently.

Many natural and human-built systems (e.g., aerospace, complex fluids, neuro-glia
information processing) exhibit complex dynamics characterized by partial differential
equations (PDEs) (Shlesinger, West, and Klafter, 1987; McKeown et al., 2020). For
example, the design of wings and airplanes robust to turbulence, requires to learn
complex PDEs. Along the same lines, complex fluids (gels, emulsions) are multiphasic
materials characterized by a macroscopic behavior (Ovarlez et al., 2020) modeled by
non-linear PDEs. Understanding their variations in viscosity as a function of the
shear rate is critical for many engineering projects.

Despite the tremendous boost that is provided by the traditional machine learning
(ML) and artificial intelligence (AI) for the analysis of static data through identi-
fying the statistical interdependence between components of a system of interest,
there is little to say about analyzing dynamical processes from big data and uncer-
tainty quantification for large-scale complex systems. Specifically, ML has a limiting
ability in deciphering the physical driving laws and governing equations from multi-
modal heterogeneous, scarce, and/or noisy time-series data associated with complex
systems exhibiting multi-scale and multi-physics spatiotemporal evolution. These
multi-scale and multi-physics spatiotemporal characteristics that occur in physics,
biology, chemistry, neuroscience, and even geology, are usually encoded through (frac-
tional or integer order) PDEs with possibly uncertain parameters. These PDEs are
derived from conservation laws on energy, momentum, or electric charge (e.g., diffu-
sion equation, Maxwell’s equations, Navier-Stokes equations, Schrödinger equations).
However, a plethora of complex systems from biology, neuroscience, or finance have
numerous hidden interaction mechanisms, and the derivation of the PDEs describing
their evolution is unknown. In the big data era, we witness new opportunities for
data-driven discoveries of potentially new physical phenomena and new physics laws
(or rules). Consequently, one may ask the following fundamental question: Can we
learn a PDE model from a given set of time-series measurements and perform ac-
curate, efficient, and robust predictions using this learned model? This question has
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motivated researchers to develop methods for estimating PDE parameters using nu-
merical solutions of PDEs (Fox and Nicholls, 2001; Müller and Timmer, 2002) (which
requires careful parameterizations and high computational cost), Bayesian approaches
(Xun et al., 2013), and a two-state approach (Liang and Wu, 2008; Bär, Hegger, and
Kantz, 1999; Müller and Timmer, 2004; Voss et al., 1999) where the parameters of the
PDEs are estimated via least squares. However, it has not been addressed that how
to exploit the higher-order statistics of the measurements? Such measurements can
characterize the rare events for a robust understanding of complex systems, and de-
termining whether fractional or integer order PDEs together with their corresponding
parameters govern the observations.

1.2.1 Modeling PDEs

Regarding modeling, diffusion is one of the fundamental mechanisms used for an-
alyzing the transport of particles, and a common example of a diffusion process is
the Brownian motion. Chaotic motion of a particle characterizes the latter process,
and it can be modeled by a random walk such that the mean square displacement
follows the diffusing scaling ⟨(∆X)2⟩ ∼ t (where ⟨.⟩ designates the mean). Further-
more, diffusion is a principal concept that explains many natural and scientific /
technological phenomena (e.g., particles motion (Einstein, 1905), DNA and cellular
processing (Barkai, Garini, and Metzler, 2012; Tolić-Nørrelykke et al., 2004; Jeon et
al., 2011; Goychuk, 2015), microbial communities (Koorehdavoudi et al., 2017), brain
activity (Papo, 2014), physiological complexity and cyber-physical systems model-
ing (Gupta, Pequito, and Bogdan, 2018b; Gupta, Pequito, and Bogdan, 2018c; Xue
and Bogdan, 2017)), neuron spikes (Yang, Gupta, and Bogdan, 2019). The focus
on analyzing complex systems led to studying anomalous diffusion (Gefen, Aharony,
and Alexander, 1983; Klafter, Blumen, and Shlesinger, 1987; Bouchaud and Georges,
1990; Metzler and Klafter, 2000; Metzler, Glöckle, and Nonnenmacher, 1994; Met-
zler and Klafter, 2004; Klafter and Sokolov, 2005; Thiel, Flegel, and Sokolov, 2013;
McKinley and Nguyen, 2018; Oliveira et al., 2019; Morgado et al., 2002; Metzler
et al., 2014; Sokolov, 2012) to decipher complex system properties (e.g., long-range
memory, higher-order correlations, ergodicity breaking measured as a discrepancy be-
tween the long time-averaged mean squared displacement and the ensemble-averaged
mean squared displacement).

The anomalous diffusion has been shown to be able to describe complex fluid dynamics
(Grmela and Öttinger, 1997; Cabreira et al., 2018), biological systems (Brangwynne et
al., 2009; Palmieri et al., 2015; Lomholt, Ambjörnsson, and Metzler, 2005), transport
(Klages, Radons, and Sokolov, 2008), dynamics in fractal structures (Mandelbrot,
Freeman, and Company, 1983; Balankin, 2018; Bogdan and Marculescu, 2011), and
economics (Scalas, 2006). Contrary to random walks processes describing classical
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diffusion (e.g., Brownian motion), the particle possesses an internal memory that
leads to a non-stationary motion, where the mean square displacement is heavy-tailed
⟨(∆X)2⟩ ∼ tβ (β is a parameter that is related to the memory of a particle).

1.2.2 Solving PDEs

From the solution side, we discuss an operator learning framework for solving the
multi-dimensional, multi-disciplinary PDEs. Recent efforts on learning PDEs (i.e.,
mappings between infinite-dimensional spaces of functions), from trajectories of vari-
ables, focused on developing machine learning and in particular deep neural networks
(NNs) techniques. Towards this end, a stream of work aims at parameterizing the so-
lution map as deep NNs (Guo, Li, and Iorio, 2016; Zhu and Zabaras, 2018; Bhatnagar
et al., 2019; Adler and Öktem, 2017; Khoo, Lu, and Ying, 2020). One issue, however,
is that the NNs are tied to a specific resolution during training, and therefore, may
not generalize well to other resolutions, thus, requiring retraining (and possible mod-
ifications of the model) for every set of discretizations. In parallel, another stream of
work focuses on constructing the PDE solution function as a NN architecture (Raissi,
Perdikaris, and Karniadakis, 2019; Greenfeld et al., 2019; Kochkov et al., 2021; Wang,
Wang, and Perdikaris, 2021). This approach, however, is designed to work with one
instance of a PDE and, therefore, upon changing the coefficients associated with the
PDE, the model has to be re-trained. Additionally, the approach is not a complete
data-dependent one, and hence, cannot be made oblivious to the knowledge of the
underlying PDE structure. Finally, the closest stream of work to the problem we in-
vestigate is represented by the “Neural Operators” (Li et al., 2020b; Li et al., 2020c;
Li et al., 2020a; Bhattacharya et al., 2020; Patel et al., 2021). Being a complete data-
driven approach, the neural operators method aims at learning the operator map
without having knowledge of the underlying PDEs. The neural operators have also
demonstrated the capability of discretization-independence. Obtaining the data for
learning the operator map could be prohibitively expensive or time consuming (e.g.,
aircraft performance to different initial conditions). To be able to better solve the
problem of learning the PDE operators from scarce and noisy data, we would ideally
explore fundamental properties of the operators that have implication in data-efficient
representation.

Our intuition is to transform the problem of learning a PDE to a domain where a
compact representation of the operator exists. With a mild assumption regarding
the smoothness of the operator’s kernel, except finitely many singularities, the mul-
tiwavelets (Alpert, 1993), with their vanishing moments property, sparsify the kernel
in their projection with respect to (w.r.t.) a measure. Therefore, learning an oper-
ator kernel in the multiwavelet domain is feasible and data efficient. The wavelets
have a rich history in signal processing (Daubechies, 1988; Daubechies, 1992), and
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Figure 1.1: The particles process aims at extracting the high-dimensional information from a single-unit events data.
The high-dimensional information is used to identify the network topological information. Additionally, the particles
process can be used to perform the tasks as mentioned in (i)-(iv). In the present thesis work, the task (iii) is discussed
as Monkey’s choice prediction in Chapter 8.

are popular in audio, image compression (Balan et al., 2009; Silverman, Vassilicos,
and Kingsbury, 1999). For multiwavelets, the orthogonal polynomial (OP) w.r.t. a
measure emerges as a natural basis for the multiwavelet subspace, and an appropri-
ate scale/shift provides a sequence of subspaces which captures the locality at various
resolutions. We generalize and exploit the multiwavelets concept to work with arbi-
trary measures which opens-up new possibilities to design a series of models for the
operator learning from complex data streams.

1.3 Intertwine of Complex Networks and PDEs

The concept of UUs can be directly embedded into the complex networks for the
purpose of accurate modeling (see Chapter 2), and similarly PDEs can be used to
extract information about the underlying unknown phenomena (see Chapter 4). In
this section, we discuss the cross-relation of these two mathematical directions. We
show that PDE modeling of the observed data can effectively be used to decipher
some properties of the UUs in the complex networks format.

One of the general principles of most complex systems is that they consist of numerous
structures or units with dynamic inter-dependence and interactions among them.
The complex network interactions can yield unique output patterns, that can result
in higher-order functional responses. For example, neural population interactions
leading to thoughts and movements (Trousdale et al., 2012), social interactions in
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cyber-terrorist networks (Johnson et al., 2019), ecological interactions between species
(Fricke and Svenning, 2020), interactions between climate features (Réjou-Méchain
et al., 2021). In practical settings, we only have partial knowledge of the structure,
e.g., knowledge of only a fraction of the nodes in the complex network. Herein, we
address the question of inferring the underlying network topology (a property of UUs
to the limited observed spiking activities) using events recorded from multiple single
nodes that make up only a small fraction of the total nodes in the network. In this
pursuit, the network of neurons is a prominent example which is the primary case
study in the current thesis.

The human brain functions through networks of interactions between billions of neu-
rons, glia and vascular systems connected through a complex architecture (Bassett
and Gazzaniga, 2011; Sporns, 2011; Bartheld, Bahney, and Herculano-Houzel, 2016).
Together, these systems enable shifts in electrical activation patterns across brain
networks, depending on sensory stimulation and intrinsic states which are shaped by
past experience (Sporns, 2002). The view that all our perceptions, thoughts, emo-
tions, and goal directed behaviors can ultimately be traced to the dynamic changes
in the network activity within the brain is widely held (Bassett and Gazzaniga, 2011;
Sporns, 2002; Bargmann and Marder, 2013; Borst and Theunissen, 1999; Kopell et
al., 2014; Rolls and Treves, 2011; Taherkhani et al., 2020).

However, to date, no method is capable of measuring all the relevant features to
decode the network dynamics into units of behavior. While technologies that ana-
lyze anatomical connections and proxies of neuronal activity across the entire brain
such as magnetic resonance imaging (MRI) and functional MRI (fMRI) can be used
to infer certain aspects of macroscopic (brain region) network dynamics, informa-
tion is lost during the summation (fusion) that could be crucial, such as timing of
intervals between spikes (Rolls and Treves, 2011; Petersen, Panzeri, and Diamond,
2001; Srivastava et al., 2017). While technologies for measuring action potentials or
spikes from single neurons has advanced considerably in recent years (Pal and Tian,
2020; Banstola et al., 2020), even the best technologies can only measure hundreds
to thousands of units usually only in a few restricted regions of the brain (Vázquez-
Guardado et al., 2020) and providing very scarce information about the neuronal
networks involved in the respective cognitive functions. Hence, there is a need for
developing new mathematical methods capable of inferring features of the neuronal
network from measuring only a small sample of single units (from a few to thousands)
and relate the statistical characteristics of neuronal spiking activity with the overall
brain functionality and behavior.

One of the major limitations of current statistical models of neuron spike data is that
they do not account for the heterogeneity and non-Markovianity in the spike trains
from individual units. We hypothesize that neuronal spike trains could be modeled

9



more precisely by fractional order partial differential equations. Further, we hypothe-
size that a more precise statistical representation of the spiking patterns that captures
the fractal properties and long-range memory of the inter-spike intervals could un-
cover features about the underlying network topology and dynamics, and thereby
provide new insight into how cognitive and sensory processes are represented in the
brain. The need for non-Markovian fractal methods is recognized as an important
open-problem in the neuroscience community (Breakspear, 2017). The current thesis
work, by taking a novel fractional diffusion-based analogy for the neural spike trains,
is a step towards addressing this challenge.

1.4 Thesis Contributions

The main problem considered in this thesis work is how unknown sources contribute
towards the observed data, and how to observe their presence with minimal observa-
tions. Instead of treating them as noise, we show that under certain assumptions, the
acknowledgement of their presence can be very helpful. By using some existing and
then developing several new mathematical tools, we show that modeling efficiency
improves a lot and a variety of new inferences can be made. The thesis contributions
are divided as follows:

• In Chapter 2, we discuss the time-varying complex networks framework for
multi-dimensional data streams with unknown unknowns. We take the path
of most restrictive assumptions and then see how modeling evolves after relax-
ing them one by one. This work has appeared as Gupta, Pequito, and Bogdan
(2018b), Gupta, Pequito, and Bogdan (2018d), and Gupta, Pequito, and Bog-
dan (2018c).

• In Chapter 3, the modeling of multi-dimensional discrete event-type data streams
is considered. Without the complete knowledge assumption, a unknown sources
version of modeling event streams is considered. The work has previously ap-
peared as Yang, Gupta, and Bogdan (2019).

• In Chapter 4, a partial differential equations viewpoint is taken for the data.
The anomalous diffusion provides generalization to model several complex phe-
nomena. We discuss two efficient algorithms to estimate the fractional diffusion
equation parameters from fewer data streams. The work has appeared as Znaidi
et al. (2020).
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• In Chapter 5, we take a new approach of ‘Neural Operators’ to solve the PDEs
which is time-efficient. By learning the operator map in the multiwavelet do-
main, we show that the operator learning is efficient and more accurate. The
work has appeared as Gupta, Xiao, and Bogdan (2021).

• In Chapter 6, we study an extension of the work in Chapter 2 of sensor selection.
A new way of understanding the non-submodular cost functions is studied with
performance guarantees trade-offs. The work has appeared as Gupta, Pequito,
and Bogdan (2018a).

• In Chapter 7, a new model-based reinforcement learning method is considered
using the developed fractional dynamics in Chapter 2. We show performance
bounds of the non-Markovian RL and applications on diabetes simulator. The
work has appeared as Gupta et al. (2021c).

• In Chapter 8, we discuss a fusion of complex networks and PDEs through a
novel concept of neuron particles. The network topological inference is made
using PDE parameters. A part of the ongoing work has appeard in Gupta et al.
(2021b).

• Finally, we conclude the thesis and propose some future directions in Chapter 9.
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Complex Networks

12



Chapter 2

Time-Varying Complex Networks

We first describe the time-varying complex network (TVCN) model having fractional
order dynamical growth under unknown excitations. Next, building upon this model,
we propose TVCN with latent fractional nodes and unknown unknowns.

2.1 TVCN with Unknown Unknowns

We consider a linear discrete time fractional-order dynamical model described as
follows:

∆αx[k + 1] = Ax[k] +Bu[k]
y[k] = Cx[k], (2.1)

where x ∈ Rn is the state, u ∈ Rp is the unknown input and y ∈ Rn is the output
vector. Also, we can describe the system by its matrices tuple (α,A,B,C) of appro-
priate dimensions. In what follows, we assume that the input size is always strictly
less than the size of state vector, i.e., p < n. The difference between a classic lin-
ear time-invariant and the above model is the inclusion of fractional-order derivative
whose expansion and discretization (Dzielinski and Sierociuk, 2005) for any ith state
(1 ≤ i ≤ n) can be written as

∆αixi[k] =
k∑

j=0
ψ(αi, j)xi[k − j], (2.2)

where αi is the fractional order corresponding to the ith state and ψ(αi, j) = Γ(j−αi)
Γ(−αi)Γ(j+1)

with Γ(.) denoting the gamma function.
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Having defined the system model, the system identification i.e. estimation of model
parameters from the given data is an important step. It becomes nontrivial when
we have unknown inputs since one has to be able to differentiate which part of the
evolution of the complex network is due to its intrinsic dynamics and what is due to
the unknown inputs. Subsequently, one of the first problems we need to address is
that of system identification from the data, as described next.

2.1.1 Problem Formulation

The fractional-order dynamical model takes care of long-range memory which often
is the property of many physiological signals. The estimation of the spatiotemporal
parameters when there are no inputs to the system was addressed in (Xue, Rodriguez,
and Bogdan, 2016). But as it happens, ignoring the inputs inherently assume that
the system is isolated from the external surrounding. Hence, for a model to be able to
capture the system dynamics, the inclusion of unknown inputs is necessary. Therefore,
the first problem that we consider is as follows.

Problem-1 : Given the measurements of all states across a time horizon [t, t+T −1]
of length T , we aim to estimate the model parameters (α,A) and the unknown inputs
{u[k]}t+T −2

t .

Notice that this would extend the work in (Xue, Rodriguez, and Bogdan, 2016) to
include the case of unknown inputs. In fact, we will see in Section 2.1.2 that the
proposed solution would result in a different set of model parameters.

2.1.2 Model Estimation

We consider the problem of estimating α, A, B and inputs {u[k]}t+T −2
t from the given

limited observations y[k], k = [t, t+T −1], which due to the dedicated nature of sens-
ing mechanism is same as x[k]. The realization of B can be application dependent,
and hence instead of estimating, can also be provided using some experimental data.
For the simplicity of notation, let us denote z[k] = ∆αx[k + 1] with k chosen appro-
priately. The pre-factors in the summation in (2.2) grows as ψ(αi, j) ∼ O(j−αi−1)
and, therefore, for the purpose of computational ease we have limited the summation
in (2.2) to the first J values, where J > 0 is sufficiently large. Therefore, zi[k] can be
written as

zi[k] =
J−1∑
j=0

ψ(αi, j)x[k + 1− j], (2.3)
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with the assumption that x[k], u[k] = 0 for k ≤ t − 1. Using the above introduced
notations and the model definition in (2.1), the given observations are written as

z[k] = Ax[k] +Bu[k] + e[k], (2.4)

where e ∼ N (0,Σ) is assumed to be Gaussian noise independent across space and
time. For simplicity, we have assumed that each noise component has same variance,
i.e., Σ = σ2I. Also, let us denote the system matrices as A = [a1, a2, . . . , an]T and
B = [b1, b2, . . . , bn]T . The vertical concatenated states and inputs during an arbitrary
window of time as X[t−1,t+T −2] = [x[t − 1], x[t], . . . , x[t + T − 2]]T , U[t−1,t+T −2] =
[u[t−1], u[t], . . . , u[t+T−2]]T respectively, and for any ith state we have Zi,[t−1,t+T −2] =
[zi[t− 1], zi[t], . . . , zi[t+ T − 2]]T . For the sake of brevity, we would be dropping the
time horizon subscript from the above matrices as it is clear from the context.

Since the problem of joint estimation of the different parameters is highly nonlin-
ear, we proceed as follows: (i) we estimate the fractional order α using the wavelet
technique described in (Flandrin, 1992); and (ii) with α known, the z in (2.3) can
be computed. Therefore, the problem now reduces to estimate A,B and the inputs
{u[k]}t+T −2

t . Towards this goal, we propose the following sequential optimization
algorithm similar to an expectation-maximization (EM) algorithm (McLachlan and
Krishnan, 1996). Briefly, the EM algorithm is used for maximum likelihood estima-
tion (MLE) of parameters subject to hidden variables. Intuitively, in our case, in
Algorithm 1, we estimate A and B in the presence of hidden variables or unknown
unknowns {u[k]}t+T −2

t . Therefore, the ‘E-step’ is performed to average out the effects
of unknown unknowns and obtain an estimate of u, where due to the diversity of so-
lutions, we control the sparsity of the inputs (using the parameter λ′). Subsequently,
the ‘M-step’ can then accomplish MLE estimation to obtain an estimate of A and B.
The solution provided in (Xue, Rodriguez, and Bogdan, 2016) can be related to the
proposed technique as follows.

Remark 2.1. The solution to the system parameters (α,A,B) estimation without
inputs (Xue, Rodriguez, and Bogdan, 2016) is a special case of the EM like approach
proposed in the Algorithm 1.

Proof. Upon setting {u[k]}t+T −2
t = 0 in the E-step of the Algorithm 1, M-step would

be the same at each iteration. Hence the algorithm stays at the initial point which is
the solution in (Xue, Rodriguez, and Bogdan, 2016).

It is worthwhile to mention the following result regarding EM algorithm.

Theorem 2.1 ((Dempster, Laird, and Rubin, 1977)). The incomplete data (with-
out unknown unknowns) likelihood P(z, x;A(l), B(l)) is non-decreasing after an EM
iteration.
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Algorithm 1: EM algorithm
Input: x[k], k ∈ [t, t + T − 1]
Output: A, B and {u[k]}t+T −2

t

Initialize compute α using (Flandrin, 1992) and then z[k]. For l = 0, initialize B(l),
and A(l) as

a
(l)
i = arg min

a
||Zi −Xa||22

repeat
(i) ‘E-step’: For k ∈ [t, t + T − 2] obtain u[k] as

u[k] = arg min
u
||z[k]−A(l)x[k]−B(l)u||22 + λ′||u||1,

where λ′ = 2σ2λ;
(ii) ‘M-step’:
obtain A(l+1) = [a(l+1)

1 , a
(l+1)
2 , . . . , a

(l+1)
n ]T and B(l+1) = [b(l+1)

1 , b
(l+1)
2 , . . . , b

(l+1)
n ]T

where
[a(l+1) T

i , b
(l+1) T
i ]T = arg min

a,b
||Zi −Xa− Ub||22,

l← l + 1;
until until converge;

Hence, the proposed algorithm being EM (detailed formulation in the Appendix A.1)
has non-decreasing likelihood. Additionally, we have the following result about the
incomplete data likelihood.

Proposition 1. The incomplete data likelihood P(z, x;A(l), B(l)) is bounded at each
iteration l.

We can comment about the convergence of the Algorithm 1 as follows.

Lemma 2.1. The Algorithm 1 is convergent in the likelihood sense.

Proof. Using Theorem 2.1, Proposition 1 and Monotone Convergence Theorem, we
can claim that the likelihood P(z, x;A(l), B(l)) will converge.

It should be noted that convergence in likelihood does not always guarantee conver-
gence of the parameters. But as emphasized in (Wu, 1983), from numerical viewpoint
the convergence of parameters is not as important as convergence of the likelihood.
Also the EM algorithm can converge to saddle points as exemplified in (McLachlan
and Krishnan, 1996).
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2.2 TVCN with Latent and Unknowns

We consider a time-varying complex network (TVCN) described by a linear discrete-
time fractional-order model with latent nodes, which can be mathematically written
as

∆α

[
x[k + 1]
z[k + 1]

]
=

[
A11 A12
A21 A22

] [
x[k]
z[k]

]
+
[
B1
B2

]
u[k] +

[
e1[k]
e2[k]

]
, (2.5)

where x ∈ Rn are the observed state variables, z ∈ Rm are the latent states, and u ∈
Rp are the unknown excitations. The system matrices (α,A11, A12, A21, A22, B1, B2)
are of appropriate dimensions. The noise variables are assumed to be uncorrelated
across observed and latent nodes with e1 ∼ N (0,Σ1) and e2 ∼ N (0,Σ2). The
fractional-order derivative in equation (2.5) obeys the discrete form for every node,
either observed or latent, as follows (Oldham and Spanier, 2006):

∆αx[k] =
k∑

j=0
Ψ1

jx[k − j], ∆αz[k] =
k∑

j=0
Ψ2

jz[k − j], (2.6)

where the matrices Ψ1
j = diag(ψ(αo

1, j), . . . , ψ(αo
n, j)) and Ψ2

j = diag(ψ(αl
1, j), . . . ,

ψ(αl
m, j)) with ψ(α, j) = Γ(j−α)

Γ(−α)Γ(j+1) , and Γ(.) denotes the gamma function. The
fractional-order coefficients corresponding to the ith node of observed and latent
variables are denoted by αo

i and αl
i, respectively.

2.2.1 System Identification

The physiological signals, e.g. EEG and ECG, display spatio-temporal behavior,
where the temporal component shows long-range memory dependence as realized in
(Xue, Rodriguez, and Bogdan, 2016; Gupta, Pequito, and Bogdan, 2018b). As a con-
sequence, properly modeled by the systems described in Section 2.1.2. When trying to
obtain the system representation, i.e., to identify the system’s parameters, the model
estimation is contingent on the complete knowledge of the assumed complex-network
dynamics; specifically, their nodes’ activities in terms of time-series. Such assump-
tions may not hold in most of the cases where we are provided only with partial
data. In such cases, to better predict the complex systems dynamics, it is beneficial
to incorporate latent nodes. In this regard, the problem considered in this work can
be stated as follows.
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Problem Statement: Given the partial data (observed) x[k] in terms of time-series
across a time-horizon k ∈ {1, . . . , N}, and knowledge of the fractional orders of latent
nodes αl

i(1 ≤ i ≤ m). Estimate the model parameters (αo, A11, A12, A21, A22, B1, B2)
and latent states {z[k]}N−1

1 , and the unknown inputs {u[k]}N−1
1 .

This problem will build upon the models in (Gupta, Pequito, and Bogdan, 2018b;
Xue, Rodriguez, and Bogdan, 2016), but with striking difference of availability of only
the partial data, and presence of latent nodes in the model. In contrast to (Gupta,
Pequito, and Bogdan, 2018b), this work also relax the assumption of knowledge of the
input matrices, and they will be computed as part of the system’s parameters. Notice
that we are implicitly assuming that the fractional-order coefficients are constant over
time since these have been shown to be empirically slowly time-varying. We will see
in the Section 2.3.2.2 that by considering latent nodes we can improve the prediction
accuracy of the observed data. In the next section, we detail the assumptions required,
and solution to this estimation problem.

2.2.2 Model Estimation

Due to notational convenience, we denote x[k] as xk. The model estimation procedure
begins with, first making an estimate of the latent node activities with assumptions
that some approximation of the system’s parameters are known. A fractional Kalman
filtering approach similar to (Sierociuk and Dzieliński, 2006) under Bayesian approx-
imation is used for this purpose in Section 2.2.2.1. Subsequently, we will use the new
data (estimated latent and the available data) to perform the system identification.
In Section 2.2.2.2, we present an iterative algorithm to jointly estimate the system’s
parameters and the unknown unknowns.

2.2.2.1 Fractional Kalman filtering

The fractional-order Kalman filtering aims at estimation of the latent states at each
kth time step with the available data. Using standard notations in the Kalman
filtering (for the linear systems), we define the following estimates

ẑk = E[zk|x1, x2, . . . , xk+1, u1, . . . , uk], and
z̃k = E[zk|x1, x2, . . . , xk, u1, . . . , uk−1].

(2.7)

In contrast to the Kalman filtering for classical linear system, we have the ẑk’s con-
ditioned on the observed data from x1 till xk+1. The reasoning behind this can be
quickly seen in the definition of system model in equation (2.5). In the classical linear
system, the observations and latent activities are indexed at the same time. While in
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the considered system model, with the observations being xk and latent nodes being
zk, we can witness that the equation (2.5) relate the latent node activity zk with ob-
servations till xk+1. The Kalman filtering solutions can be mathematically intractable
due to the complexities introduced by long-range dependence of the fractional oper-
ator ∆α. We will resort to the Bayesian network assumption (as in (Gupta, Pequito,
and Bogdan, 2018c)) for the latent state estimates which is described in the following
lemma.

Lemma 2.2. The Fractional-order Kalman filtering solution for the system described
in (2.5) with the Bayesian Network assumption is written as

ẑk = z̃k +Kk(yk − AT
12z̃k),

P̂k = (AT
12Σ−1

1 A12 + P̃−1
k )−1,

Kk = P̃kA
T
12(Σ1 + A12P̃kA

T
12)−1,

yk = xk+1 +
k+1∑
j=0

Ψ1
jxk+1−j − A11xk −B1uk,
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z̃k = A22ẑk−1 + A21xk−1 +B2uk−1 −
k∑

j=0
Ψ2

j ẑk−j,

P̃k = (A22 −Ψ2
1)P̂k−1(A22 −Ψ2

1)T +
k∑

j=2
Ψ2

j P̂k−jΨ2 T
j + Σ2,

where the conditional covariances are defined as P̂k = E[(zk−ẑk)(zk−ẑk)T |x1, . . . , xk+1
, u1, . . . , uk] and P̃k = E[(zk − z̃k)(zk − ẑk)T |x1, . . . , xk, u1, . . . , uk−1].

Next, we present an algorithm to determine the system’s parameters attaining max-
imum likelihood estimation.

2.2.2.2 Maximum Likelihood Estimation

The MLE estimate of the system’s parameters has to be performed in the presence
of latent variables. We propose to use an Expectation-Maximization (EM) like algo-
rithm. The conditional distributions of the latent fractional nodes considered are as
described in the Section 2.2.2.1. Moreover, we have unknown unknowns in our system
uk, and this work in contrast to (Gupta, Pequito, and Bogdan, 2018b) will make an
estimation of uk as well as the input matrices Bi. We define the EM algorithm to
make an estimate of the latent fractional nodes activities and unknown unknowns
jointly.

The EM update of the system’s parameters at each iteration is performed via the
following result.

Theorem 2.2. An update of the system parameters used in (2.5) with given {xk}N
1 ,

{u(t)
k }N−1

1 and the initial conditions x0, z0, u0, P̂0, at each iteration index t is (2.8),
(2.9) and

Σ(t+1)
1 = 1

N

N∑
k=1

[
(̊xk − A(t+1)

11 xk−1 − A(t+1)
12 ẑ

(t)
k−1 −B

(t+1)
1 u

(t)
k−1)̊xT

k

]
, (2.10)

Σ(t+1)
2 = 1

N − 1

N−1∑
k=1

P̂ (t)
k +

k∑
j=1

Ψ2
j P̂

(t)
k−jΨ2 T

j + z̊
(t)
k z̊

(t) T
k − A(t+1)

21 xk−1z̊
(t) T
k − A(t+1)

22 (

P̂
(t)
k−1Ψ2 T

1 + ẑ
(t)
k−1z̊

(t) T
k )−B(t+1)

2 u
(t)
k−1z̊

(t) T
k

]
, (2.11)
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Figure 2.1: Sensor distribution for the measurement of EEG. The channel labels are shown with their correspond-
ing number. For the model estimation with only unknown unknowns we use the full 64 sensors, while for latent
nodes+unknown unknowns we used the indicated sensors in blue to reduce the dimensionality of the problem.

where x̊k =
k∑

j=0
Ψ1

jxk−j and z̊
(t)
k =

k∑
j=0

Ψ1
j ẑ

(t)
k−j.

Now, using these results, we write the iterative algorithm for system’s parameter
estimation. Intuitively, the algorithm starts with an initial guess of the system pa-
rameters, and then at each step, obtain the latent node activities using the approach
described in Section 2.2.2.1. Further, upon estimating the incurred error through un-
known unknowns, an update of the system’s parameters is obtained and the process is
repeated until convergence. The mentioned steps are formally detailed as Algorithm 1.

2.3 Estimation Results

We demonstrate the application of the results derived in the previous sections on
physiological signals. In particular we have taken a 64-channel EEG signal which
records the brain activity of 109 subjects. The 64-channel/electrode distribution
with the corresponding labels and numbers are shown in Figure 2.1. The subjects
were asked to perform motor and imagery tasks. The data was collected by BCI2000
system with sampling rate of 160Hz (Schalk et al., 2004; Goldberger et al., 2000).

2.3.1 Unknown Unknowns

The parameters of the system model α, A and B, are estimated by the application
of Algorithm 1. The performance of EM algorithm like any iterative algorithm is
crucially dependent on its initial conditions. For the considered example of EEG
dataset, it was observed that convergence of the algorithm is fast. Further, even
few iterations, for example 5, was sufficient to reach the point of local maxima of
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Figure 2.2: Comparison of predicted EEG state for the channel C1 using fractional-order dynamical model. The five
step and one step predictions are shown in (2.2a) and (2.2b) respectively.

the likelihood. This shows that the choice of the initial point for EM algorithm is
considerably good. The values predicted by the model in comparison with actual
data are shown in Figure 2.2. The one step prediction follows very closely the actual
data, but there is small mismatch in the five step prediction. The ratio of square
root of mean squared error (RMSE) of the prediction by model with and without
inputs (Xue et al., 2016) is shown in Figure 2.3 for total of 109 subjects. The RMSE
is defined as

ei =

√√√√ N∑
k=1

(xi[k]− x̂i[k])2 /
N∑

k=1
x2

i [k] , (2.8)

As observed, the error ratio is less than one-tenth in the case when unknown inputs
is considered. It should be noted that the subjects for which the ratio is high (for
example ID−52, 72) are the ones which have low RMSE for both the cases of with
and without inputs, as shown in Figure 2.4. Hence, the ratio approaches closer to
0.5 for these cases. Therefore, the fractional-order dynamical model with unknown
inputs fits the EEG data much better than the case of no inputs. In the next part, we
will show the results for estimation procedure working with latent fractional nodes as
well as unknown unknowns.

2.3.2 Latent fractional and Unknown Unknowns

2.3.2.1 Simulated Data

We consider a pedagogical fractional-order system with three nodes, and without
unknown inputs with the following parameters:

A =

 0 0.1 0.2
−0.01 −0.02 0.3
0.01 −0.03 −0.05

 , α = {0.7, 1.1, 0.8}.
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Figure 2.5: Simulated activities for all three nodes generated by selected model parameters.

For studying the latent node behavior, we remove one node and observe the rest,
n = 2 and m = 1, from which we use to recover the time-series generated by the
accessible nodes (i.e., the nodes that are not latent) using our proposed method (i.e.,
with latent variables) versus those previously used in the literature (Gupta, Pequito,
and Bogdan, 2018b) (i.e., without latent variables). The five-step prediction error
results are summarized in Table 2.1, where the relative error values are computed as
in (2.8).

Observed without latent with latent
2 3 13.40% 71.14% 7.94% 68.22%
1 3 22.12% 69.26% 21.12% 65.31%
1 2 11.44 % 28.92% 8.37% 21.03%

Table 2.1: A comparison of mean squared prediction error with and without using latent node model for various
possibilities of observed nodes. The ith row corresponds to making node i as latent.
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Observed (1→12)+ ϕ 13 13→14 13→15 13→16 13→17 13→18 13→19 13→20
Hidden 13→21 14→21 15→21 16→21 17→21 18→21 19→21 20→21 21

Without latent 10.51 10.44 10.97 11.71 13.51 13.77 15.29 16.03 14.56
With latent 6.07 7.20 6.53 8.49 11.36 10.50 13.18 13.18 13.16

(a)

Observed (1→12) + ϕ 56 56→57 56→58 56→59 56→60 56→61 56→62 56→63
Hidden 56→64 57→64 58→64 59→64 60→64 61→64 62→64 63→64 64

Without latent 10.51 12.09 15.99 13.45 15.29 16.59 20.40 20.89 21.52
With latent 6.31 7.92 11.27 9.25 9.90 9.69 13.28 19.87 20.07

(b)

Table 2.2: Average prediction error (in %) with and without using latent model for two different set of sensors in (a)
and (b). Each column has labeled hidden nodes, and observed nodes are union of (1 → 12) and the corresponding
column entry. The total number of observed and latent nodes change by n + 1 and m − 1 from left to right.

where x̂i[k] is the predicted value of the ith node at time k. The error percentage
is consistently high for node 3, and the reason for this lies in the actual behavior of
the node activity as seen in Figure 2.5. Specifically, node 3 activity –unlike other two
nodes– stays very close to zero and vary frequently, which makes it difficult to use
for accurate predictions using the proposed model. Next, we see the application on
real-world EEG dataset.

2.3.2.2 Real-world data

The estimation of model’s parameters, such as the coupling matrices Aij, the input
matrices Bi, and the latent states, is performed for the EEG data using Algorithm 1.
The log likelihood converges with iterations as we observe in Figure 2.6. We notice
that the choice of initial conditions can play a great role in fast convergence, as well
as the accuracy of the results. If some previous knowledge is available (for example,
through experiments) about the coupling matrices, then it can be used to achieve
better results. In this work, the matrices are initialized to entries selected uniformly
at random between −1 and 1. In the current experiment, we have used the data when
the subject has executed ‘both feet movement’. While performing model estimation,
the use of relevant EEG sensors are required for having accurate predictions. There-
fore, we used neuro-physiological evidence-based sensors that capture the behavior
associated with the peripheral nervous system (i.e., the motor cortex) and labeled
from 1 to 21, –see Figure 2.1. Specifically, different subregions in the motor region are
activated when the feet move, so we have used this information to carefully reduce
the number of sensors/nodes in our study.

The proposed latent model is tested in a comprehensive manner by performing the
following steps: (i) first fixing the nodes to make prediction from sensor IDs 1 to 12
(denoted by 1→ 12); (ii) second, consecutively reveal new nodes to increase the total
observed nodes dimension n (originally from 12) by one and decrease total latent node
dimension m (from 9) by one, in each step. The reported error values are computed
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Figure 2.6: Log likelihood vs number of iterations for observed indices (1 → 12) and hidden indices (13 → 21) using
Algorithm 1.

from equation (2.8), and are averaged across the fixed twelve observed nodes. In
Table 2.2a we provide some evidence that the latent model with minimal information
concerning fractional orders of the latent nodes perform better than without using any
model on the unobserved nodes. We also observed the necessity of the relevant latent
nodes, by considering the set of sensors which are placed on the region of brain least
related to the undertaken situation of ‘both feet movement’. The same experiment is
repeated to predict the activities of fixed nodes in consideration 1→ 12 and varying
the total observed/latent nodes, but this time from a set of sensor IDs {56, . . . , 64}.
The prediction error values are reported in Table 2.2b. We notice that the error values
are higher upon revealing nodes from the set {56, . . . , 64}. This raises an important
and intuitive point that, revealing/hiding time-series that have less relation to the
data under consideration are very likely to increase inaccuracies in the model.

The experiments, both simulated and with real EEG data, provided evidence that
the inclusion of latent model is helpful in the context of the accuracy of the retrieved
model and prediction accuracies.

2.4 Brain Machine Interfaces

Brain interfaces aim to address the following problem.

Is it possible to classify a specific cognitive state, e.g., motor task or its imagina-
tion, by using measurements collected with a specific sensing technology that harvest
information about brain activity?

In this Section, we revisit this problem in the context of brain-computer interfaces
(BCI), when dealing with EEG-based noninvasive brain interfaces. Towards this goal,
propose to use a systems’ perspective that enables to enhance the BCI (see Figure 2.7
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Figure 2.7: A systematic process flow of the Brain interface. The imagined motor movements of the subject are
captured in the form of EEG time series which are then fed to the computational unit. A fractional-order dynamics
based complex network model is estimated for the time series and the model parameters are used as features for
machine learning classification. The output of classifier predicts various motor movements with certain confidence.

for an overview) reliability and resilience. We use the fractional spatio-temporal
system model as we discussed in Section 2.1.

The unprocessed EEG signals coming from the sensors although carrying vital in-
formation may not be directly useful for making the predictions. However, by rep-
resenting the signals in terms of parametric model (α,A) and the unknown signals
as we did in the Section 2.1, we can gain better insights. The parameters of the
model being representative of the original signal itself can be used to make a concise
differentiation.

The A matrix represents how strong is the particular signal and how much it is
affecting/being affected by the other signals that are considered together. While
performing or imagining particular motor tasks, certain regions of the brain gets
more activated than others. Simultaneously, the inter-region activity also changes.
Therefore, the columns of A which represent the coefficients of the strength of a signal
affecting other signals can be used as a feature for classification of motor tasks. In
this work, we will be considering the machine learning based classification techniques
like logistic regression and Support Vector Machines (SVM) (Murphy, 2012). The
other classification techniques c The choice of kernels would vary from simple ‘linear’
to radial basis function (RBF), i.e., k(xi, xj) = e−γ(xi−xj)2 . The value of parameters of
the classifier and possibly of the kernels are determined using the cross-validation. The
range of parameters in the cross-validation are from 2−5, . . . , 215 for γ and 2−15, . . . , 23

for C = 1/ λ, both in the logarithmic scale, where λ is the regularization parameter
which appears in optimization cost of the classifiers (Murphy, 2012).
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2.4.1 Case Study

We will now illustrate the usefulness of the fractional-order dynamic model with un-
known inputs in the context of classification for BCI. We have considered two datasets
from the BCI competition (Blankertz et al., 2006). The datasets were selected on the
priority of larger number of EEG channels and number of trials for training. The
available data is split into the ratio of 60% and 40% for the purpose of training and
testing, respectively.

2.4.1.1 Dataset-I

We consider for validation the dataset labeled ‘dataset IVa’ from BCI Competition-
III (Dornhege et al., 2004). The recording was made using BrainAmp amplifiers and
a 128 channel electrode cap and out of which 118 channels were used. The signals
were band-pass filtered between 0.05 and 200 Hz and then digitized at 1000 Hz. For
the purpose of this study we have used the downsampled version at 100 Hz. The
dataset for subject ID ‘al’ is considered, and it contains 280 trials. The subject was
provided a visual cue, and immediately after asked to imagine two motor tasks: (R)
right hand, and (F) right foot.

Sensor Selection and Modeling: To avoid the curse-of-dimensionality, instead
of considering 118 sensors available, which implies the use of 118 × 118 dynamics
entries for classification, only a subset of 9 sensors is considered. Specifically, only
the sensors indicated in Figure 2.8 are selected on the basis that only hand and feet
movements need to be predicted, and only a 9× 9 dynamics matrix and 9 fractional
order coefficients are required for modeling the fractional order system. Besides,
these sensors are selected because they are close to the region of the brain known to
be associated with motor actions.

The model parameters (α,A) are jointly estimated with the unknown inputs using
Algorithm 1, therefore the effect of the inputs is inherently taken care of in the pa-
rameters. The structure of matrix A for two different labels is shown in Figure 2.10.
We have used the sensors C3 and C1 which are indexed as 3 and 4, respectively in
Figure 2.10. It is apparent from Figure 2.10 that the columns corresponding to these
sensors have different activity and hence deem to be fair candidates for the features
to be used in classification. Therefore, the total number of features are 2× 9 = 18.

2.4.1.2 Dataset-II

A 118 channel EEG data from BCI Competition-III, labeled as ‘dataset IVb’ is taken
(Dornhege et al., 2004). The data acquisition technique and sampling frequencies are
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measurement of EEG. The channel labels for the selected
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Figure 2.10: Estimated A matrix of size 9 × 9 for the
dataset-I with marked columns corresponding to the sen-
sor index 3 and 4 used for classification.
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Figure 2.11: Estimated A matrix of size 13 × 13 for the
dataset-II with marked columns corresponding to the sen-
sor index 10 and 11 used for classification.

same as in dataset of the previous subsection. The total number of labeled trials are
210. The subjects upon provided visual cues were asked to imagine two motor tasks,
namely (L) left hand and (F) right foot.

Sensor Selection and Modeling: Due to the small number of training examples,
we have again resorted to select the subset of sensors for the model estimation as we
did for the dataset-I in the previous section. Since the motor tasks were left hand and
feet, therefore we have selected the sensors in the right half of the brain and close to
the region which is known to be associated with hand and feet movements as shown
in Figure 2.9. We will see in the final part of this section that selecting sensors based
on such analogy helps not only in reducing the number of features, but also to gain
better and meaningful results.
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Figure 2.12: Testing and training accuracies for various classifiers arranged in the order of classification model com-
plexity from left to right. The estimated accuracies for dataset-I and dataset-II are shown in (a) and (b) respectively.

The estimated A matrix from Algorithm 1 is shown in Figure 2.11 for two different
labels. Out of all 13 sensors, the sensors CCP2 and CCP4 which are indexed as 10
and 11 in the matrix have striking different activity. The columns corresponding to
these two sensors seem good choice for being the features for classification. Therefore,
the total number of features are 2 × 13 = 26 for this dataset. Next, we discuss the
classification accuracy for both the datasets.

2.4.1.3 Classification Performance

Finally, the performance of the classifiers using the features explained for both the
datasets are shown in Figure 2.12. The classifiers are arranged in the order of com-
plexity from left to right with logistic regression (lR) and linear kernel being simplest
and SVM with RBF kernel being most complex. The performance plot parallels the
classic machine learning divergence curve for both the datasets. The accuracy for
training data increases when increasing the classification model complexity while it
reduces for the testing data. This is intuitive because a complex classification model
would try to better classify the training data. But the performance of the test data
would reduce due to overfitting upon using the complex models. We have very few
training examples to build the classifier and hence such trend is expected. The per-
formance of the classifiers for both the datasets are fairly high which reflects the
strength of the estimated features. We can see a 87.6% test accuracy for dataset-I
and 85.7% for dataset-II. While these accuracies depend a lot on the cross-validation
numbers and other factors like choice of classifier which can be better tuned to get
higher numbers.

For both the datasets we have seen that the proposed methodology efficiently extracts
the features which serves as good candidate to differentiate the imagined motor move-
ments. By implicitly removing the effects of the unwanted stimuli, the coefficients
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of the coupling matrix A are shown to be sufficient for discriminating relation be-
tween various EEG signals which are indicative of the motor movements. The testing
accuracies are high which indicate the good quality of the extracted features.

2.5 Discussion

We have revisited the EEG-based noninvasive brain interfaces feature extraction and
translation from a cyber-physical systems’ lens. Specifically, we leveraged spatiotem-
poral fractional-order models that cope with the unknown inputs. The fractional-
order models provide us the dynamic coupling changes that rule the EEG data col-
lected from the different EEG sensors, and the fractional-order exponents capture the
long-term memory of the process. Subsequently, unknown stimuli is determined as
the external input that least conforms with the fractional-order model. By doing so,
we have filtered-out from the brain EEG signals the unknown inputs, that might be
originated in the deeper brain structures. The presence of unknown stimuli is possibly
the result of the structural connectivity of the brain that crisscrosses different regions,
or due to artifacts originated in the muscles (e.g., eye blinking or head movement).
As a consequence, the filtered signal does not need to annihilate an entire band in
the frequency domain, thus keeping information about some frequency regions of the
signal that would be otherwise lost.

We have shown how the different features obtained from the proposed model can
be used towards rethinking the EEG-based noninvasive interfaces. In particular,
two datasets used in BCI competitions were used to validate the performance of the
methodology studied in this chapter, which is compatible with some of the state-of-
the-art performances while requiring a relatively small number of training points. We
believe that the proposed methodology can be used within the context of different
neurophysiological processes and corresponding sensing technologies. Future research
will focus on leveraging additional information from the unknown inputs retrieved
to anticipate specific artifacts and enable the deployment of neuro-wearables in the
context of real-life scenarios. Furthermore, the presented methodology can be used
as an exploratory tool by neuroscientists and physicians, by testing input and output
responses and tracking their impact in the unknown inputs retrieved by the algorithm
proposed; in other words, one will be able to systematically identify the origin and
dynamics of stimulus across space and time. Finally, it would be interesting to explore
the proposed approach in the closed-loop context, where the present models would
benefit from control-like strategies to enhance the brain towards certain tasks or
attenuate side effects of certain neurodegenerative diseases or disorders.
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Chapter 3

Neuron Spiking Models

In this chapter, we first describe our point process model of neuron system in discrete
time with inclusion of unknown artifacts. The monitored neuron behavior is modeled
as having the influence of (i) its own spiking history, (ii) other neurons activities, and
(iii) the unknown unknowns. We formally describe the problem statement addressed
in this work in the following sections.

3.1 Neuron Point Process

We consider a multi-neuron network with a total number of C neurons, and as-
sume that their spiking activities are monitored simultaneously during an observa-
tion interval [Ts, Ts + Kτ). The spiking interval length τ is usually small (in the
orders of milliseconds), K is the total number of observations and Ts is the starting
time. The neuron spiking activities are modeled as point process. Let N c

k denote the
spike counting process of the c-th neuron, c ∈ {1, . . . , C}, during the time interval
[Ts, Ts + kτ), k = 1, . . . , K. Also, a more useful quantity called incremental spik-
ing count ∆N c

k is the number of spike count fired by the neuron c in time interval
[Ts + (k − 1)τ, Ts + kτ), k = 1, 2, . . . , K, and ∆N1:C

1:K is the incremental sample path
of the entire monitored multi-neuron activity.

In the similar fashion, let ∆U i
k represent the unknown artifact activity in time interval

[Ts+(k−1)τ, Ts+kτ), k = 1, 2, . . . , K, where i is the index of the unknown, 1 ≤ i ≤ I,
and I is the total number of unknowns. In what follows, we always assume that I < C.
Moreover, we can also define ∆U1:I

1:K as the activity path of the unknowns during the
observed time horizon [Ts, Ts +Kτ).
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The probability density function (PDF) of any c-th neuron with sample path N c
1:K

can be expressed with respect to the conditional intensity function (CIF) λc(k|Hk; Θ),
where Hk is the spiking history till k time-interval and Θ are the associated param-
eters. The CIF λc(k|Hk; Θ) fully characterizes the spike trains for some neuron c
(Karr, 2017; Chornoboy, Schramm, and Karr, 1988; Brown, 2005). The CIF can be
mathematically defined as the spiking probability on time interval [kτ, kτ + ∆)

λc (k|Hk,Θ) = lim
∆→0

P (N(kτ + ∆)−N(kτ))
∆ , (3.1)

where all other conditional covariates contribute to the neuron activity. In our model,
the spiking history Hk =

{
∆N1:C

1:k−1,∆U1:I
1:k−1

}
with H1 ⊆ H2 ⊆ . . . ⊆ HK , and Θ is

the parameter tuple to measure this process.

The joint conditional probability density function for the entire multi-neuron point
process model can now be expressed with the CIF λc(k|H(k); Θ) (Brown, Kass, and
Mitra, 2004). We assume that with the given spiking history Hk, the activities of all
neurons at k-th time-interval are independent, or they are conditionally independent
with respect to the past. In other words, the correlation between neuronal activities
appears only through the history. The joint probability of the spike train can be
written as

P (N1:C
1:K |HK ; Θ) = exp

{
C∑

c=1

K∑
k=1

log λc(k|Hk; Θ)∆N c
k − τλc(k|Hk; Θ)

}
. (3.2)

We use generalized linear model (GLM) framework to describe the CIF along with
the exponential rectification. In this model, the CIF of any neuron c at time k is
linear function by four covariates namely: (a) the spontaneous, (b) the intrinsic, (c)
the extrinsic, and (d) the unknown covariate. The CIF is formally written as

log λc(k|Hk; Θ) = α(c) +
min(k−1,Q)∑

q=1
εq(c)∆N c

k−q +
C∑

c′=1,c′ ̸=c

min(k−1,R)∑
r=1

βc′

r (c)∆N c
k−r

+
I∑

i=1

min(k−1,M)∑
m=1

γi
m(c)∆U i

k−m, (3.3)

where α(c) is the spontaneous spiking rate of the neuron c, εq(c) are the intrinsic
parameters corresponding to neuron’s own spiking history with a memory length of
Q. The extrinsic parameters βc′

r (c) relates the effect of neurons c′, c′ ̸= c in system
towards neuron c with a memory length R. The unknown parameters γi

m(c) describe
the influence of unknown artifacts with the memory length of M . The complete
parameter tuple Θ can now be formally expressed as Θ = (α(c), εq(c), βc′

r (c), γi
m(c))

with appropriate indices of α, ε, β and γ. The CIF in equation (3.3) takes care of
the interactions which are intrinsic, extrinsic as well as from unknown sources. Such
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νi0 (n+1)
q = νi0 (n)

q


C∑

c=1

min(q+M,K)∑
k=q+1

∆N c
kγ

i0
k−q(c) + β

C∑
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min(q+M,K)∑
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γi0
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q

α


t
i0
q
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ti0
q = l


C∑

c=1

min(q+M,K)∑
k=q+1

∆N c
kγ

i0
k−q(c) + β

C∑
c=1

min(q+M−1,K)∑
p=max(q−M+1,1)

min(p+M,q+M,K)∑
k=max(p+1,q+1)

γi0
k−q(c)γi0

k−p(c)∆N c
k

 , (3.5)

interactions are often found among users’ activities in the social networks, e.g., Twitter
network. The modeling of such activities to decipher the user connectivity can exploit
a similar CIF formulation.

3.2 Spiking Model Estimation

With the spiking data and some initial knowledge of the unknown parameters γ,
the goal of the estimation procedure as described in this section is to perform two
tasks, first (i) estimate the system model parameters Θ = (α(c), εq(c), βc′

r (c)), and
simultaneously (ii) estimate the unknown activities ∆U1:I

1:K . To perform these two
tasks, we propose an Expectation-Maximization (EM) formulation (McLachlan and
Krishnan, 1996; Dempster, Laird, and Rubin, 1977). The proposed algorithm like
EM is split into two parts. First, it estimates the unknown activities having some
previous knowledge of the system model parameters. In the next step, the algorithm
uses this estimated unknown activity values to update the system model parameters
Θ. These steps are repeated until convergence. The goal of the algorithm is to
maximize the likelihood, and the proposed procedure being iterative will provide a
maximal likelihood solution. The log likelihood associated with the current objective
can be written as

l =
C∑

c=1

K∑
k=1

log λc(k|Hk; Θ)∆N c
k − τλc(k|Hk; Θ). (3.6)

The log-likelihood in (3.6) is a function of CIF, and at this point it is convenient to
split the CIF in equation (3.3) into two parts as follows.

λc
U(k|∆U) = exp


I∑

i=1

min(k−1,M)∑
m=1

γi
m(c)∆U i

k−m

 , and (3.7)
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ωc(k|Θ) = exp
α(c) +

min(k−1,Q)∑
q=1

εq(c)∆N c
k−q +

C∑
c′=1,c′ ̸=c

min(k−1,R)∑
r=1

βc′

r (c)∆N c
k−r

 ,
(3.8)

where λc(k|Hk; Θ) = λc
U(k|∆U)ωc(k|Θ). It can be readily realized that the first part

λc
U(k|∆U) is a function of unknown activities ∆U , while the second part ωc(k|Θ)

is function of system models parameters Θ. Hence, the ‘E’ and ‘M’ like step will
alternatively update these two parts of the CIF, respectively, to maximize the log
likelihood in equation (3.6) iteratively. The CIF partition λc

U(k|∆U) will be used for
the rest of the chapter in its most useful form as follows.

λc
U(k|ν) =

I∏
i=1

M∏
m=1

(νi
k−m)γi

m(c), (3.9)

where νi
k = e∆U i

k . The update of unknown activities, or also νi
k, is performed using

the following result.

Theorem 3.1. Given neuron spikes ∆N1:C
1:K , ωc(k|Θ) from (3.8), time interval τ ,

prior parameters α, β, and the unknown parameters γ, the unknown artifacts ∆U i0
q

are estimated using fixed-point iterations at each iteration index n as in equation
(3.4)-(3.5), where νi0

q = e∆U
i0
q and l ∈ (0, 2). The maximum likelihood estimate of νi0

k

is denoted as ν̂i0
k .

The reason for restricting the values of unknown parameters γi
k to be non-negative

in Section 3.2 can now be realized more concretely from equation (3.4) and (3.5). It
can be seen that the denominators of terms in both (3.4) and (3.5) can go negative
(depending on the data) and hence the fixed-point iterations would possibly become
intractable. However, as already mentioned, this does not restrict our ability to model
the inhibition and excitation effects, because now it can be decided through the sign
of cumulative estimated unknown activities.

For the next step, we wish to update the other part of CIF written in (3.8) as ωc(k|Θ).
Again, we express the ωc(k|Θ) in its most useful form for the rest of the chapter by
defining the following vectors.

µc = [eα(c), . . . , eϵn(c), . . . , eβc′
r (c), . . .], (3.10)

Y c(k) = [1, . . . ,∆N c′

k−r, . . . ,∆N c
k−n, . . .], (3.11)

where Y c(k) and µc are D× 1 vectors, D = 1 +Q+ (C − 1)R. The ωc(k|Θ) can now
be written as

ωc(k|Θ) =
D∏

l=1
(µc

l )Y c
l (k), (3.12)
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where µc
l and Y c

l (k) are l-th component of µc and Y c(k) in (3.10) and (3.11) respec-
tively.

Theorem 3.2 ((Chornoboy, Schramm, and Karr, 1988)). Given neuron spikes ∆N1:C
1:K ,

µc, Y c(k) from (3.10)-(3.11), and time interval τ , the exponential of system models
parameters µc as defined in (3.10) are updated using fixed-point iterations at iteration
index n as follows.

µc
j
(n+1) = µc

j
(n)


K∑

k=1
∆N c

kY
c

j (k)
K∑

k=1
τY c

j (k)
[

D∏
l=1

(µc
j
(n))Y c

l
(k)
]


βc
j

, (3.13)

βc
j =

K∑
k=1

∆N c
kY

c
j (k)

K∑
k=1

τY c
j (k)

[
D∏

l=1
(µ̂c

l )Y c
l

(k)
] [

D∑
l=1

Y c
l (k)

] , (3.14)

where µ̂c
l is the maximum likelihood estimate of µc

l .

The denominator of βc
j is a variant of maximum likelihood (ML) estimate of µc

l which
is problematic as it is not available at the time of iterations. However, an approxima-
tion with counting argument is provided in (Chornoboy, Schramm, and Karr, 1988;
Chornoboy, 1986) which works well for the estimation problems.

βc
j ≈

K∑
k=1

∆N c
kY

c
j (k)

K∑
k=1

Y c
j (k)∆N c

k

[
D∑

l=1
Y c

l (k)
] . (3.15)

The estimation results in Theorem 3.1 and Theorem 3.2 are used to construct the
following iterative algorithm.

It should be noted that in each fixed-point iteration, both in Theorem 3.1 and The-
orem 3.2, the value of exponent ti0

q and βc
j is constant with respect to the iteration

index-n. Similarly, the numerators of the fixed-point functions are constant. Hence,
they need to be computed only once per EM update and lot of computations can
be saved. It is also important to note that another big advantage offered by pro-
posed fixed-point iterations is that they are independent across time index-q and
unknown index-i0, therefore they can be implemented in parallel using current multi-
threading/multi-processing architectures. This make the computations very fast es-
pecially when we have large size of the data. On the other hand, the existing Kalman

35



Algorithm 2: EM algorithm
Input: N1:C

1:K , γi
m 1 ≤ i ≤ I, 1 ≤ m ≤M and memory lengths Q, R

Output: Θ = (α(c), εq(c), βc′
r (c)) , 1 ≤ c ≤ C, 1 ≤ q ≤ Q, 1 ≤ r ≤ R, and ∆U1:I

1:K

Initialize For t = 0, set Θ(0) by using Theorem 3.2 with ∆U1:I
1:K ∼ U [−1, 1]

repeat
‘E-step’:
(i) For each i0 ∈ [1, I] and q ∈ [1, K], using ωc(k|Θ(j)) obtain ν

i0 (j+1)
q from

Theorem 3.1 and λc
U (k|ν(j+1));

‘M-step’:
(i) Using λc

U (k|ν(j+1)) obtain µc (j+1) from Theorem 3.2 and ωc(k|Θ(j+1));
(ii) Θ(j+1) ← log µc (j+1);
j ← j + 1;

until until converge;

smoothing techniques (Kulkarni and Paninski, 2007) have dependence across time
and has to be computed serially. The fixed-point iterations and EM iterations are in
the closed-form, and they are computationally efficient. The convergence is fast, as
we will see in Section 3.3.1 and Section 3.3.3. The choice of scalar l in equation (3.5)
can play an important role in convergence rate and hence can be taken as an input
parameter as well.

The proposed techniques developed in this section are tested on simulated as well as
real-world datasets in Section 3.3.1 and Section 3.3.3, respectively.

3.3 Results

The applicability of the proposed neuron spiking model estimation technique with
unknown unknowns is studied hereafter. The estimation process, as detailed in the
Algorithm 1, is applied to an artificially generated spiking data as well as real-world
spiking dataset which is explained in the following parts.

3.3.1 Artificial Neuron Network

An artificial neuron network in Figure 3.1 is designed with a total of six neurons. Each
neuron is assumed to be influenced by (a) its intrinsic activity, (b) extrinsic effects
via other neurons in the network, and (c) unknown artifacts. The contribution of
unknown sources is quantized by having two unknown nodes u1 and u2. The extrinsic
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Figure 3.1: Neuron network assumed for the generating artificial neuronal spikes, with six observed neurons and two
unknown artifacts. The excitation and inhibition effects are indicated by + and − respectively for each directed edge.

effect is modeled by having directed edges among neurons as shown in Figure 3.1.
For example, neuron n2 excites n3, and the excitation effect is indicated using +,
also, neuron n6 inhibits n1, and the inhibition effect is marked through − sign. The
contribution of unknown nodes is indicated by the corresponding directed edges from
ui to nj in the network.

The parameters required for defining the intensity function of the spiking point-
process as in equation (3.3) are selected as follows: The values of spontaneous firing
rate α for six neurons are selected as, α = [3.5, 2.4, 2.0, 3.0, 2.8, 2.5]. The intrinsic ef-
fect memory length is selected as Q = 50 for all neurons. The previous spiking history
of each neuron can have excitatory as well as inhibitory effects on the future spiking
activity. Also, with the increasing length of the history, the effects get mitigated. The
initial values of the intrinsic parameters are negative to model the refractory period
of the neurons after firing a spike (Truccolo et al., 2005; Berry II and Meister, 1998).
To collectively model these effects, we describe the intrinsic parameters using sinc
function. The intrinsic parameter values are selected as described in (Yang, Gupta,
and Bogdan, 2019).

Next, the extrinsic effect as indicated via directed edges in Figure 3.1 is quantized
though parameters βc′

r (c) for each nc′ → nc. The extrinsic memory length is fixed as
R = 5 for each directed edge. We have used exponential decay functions to model the
parameters and the values are shown (Yang, Gupta, and Bogdan, 2019). Next, the
unknown sources contribution memory length is fixed as M = 5 for both sources u1
and u2. The parameters associated with unknown excitations are always taken to be
positive, as explained in Section 3.2, and the undertaken values are shown in (Yang,
Gupta, and Bogdan, 2019). Finally, with these parameter values we can now proceed
to the spike generation process.
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Figure 3.2: Simulated neuron spike trains for six neu-
rons with system model parameters as described in Sec-
tion 3.3.1.

10 20 30 40 50

iteration

1420

1440

1460

1480

1500

1520

1540

1560

1580

1600

L
o

g
 l
ik

e
li
h

o
o

d

with Unknowns

without Unknowns

Figure 3.3: Log likelihood at each iteration using Algo-
rithm 1 on the simulated spike trains.

3.3.2 Spike Generation with Unknown contributions

The multi-neuron spike generation can be performed by recursively compute the con-
ditional intensity parameter, or firing rate, and adding the contributions of the un-
known sources. As mentioned in Appendix B.1, we have used log-Gamma distribution
for ∆U i

k, and independent and identically distributed (iid) samples of size [I×K] are
generated using the PDF in equation (B.2). The parameter values are taken to be
α = 1 and β = 50, and the samples are then mean centered to zero. The spike train
generation procedure is similar to (Kim et al., 2011) and for the sake of completeness,
we briefly write the steps as follows:

• At step k, compute the conditional intensity function from equation (3.3) using
the system model parameters as stated in Section 3.3.1, and unknown sources
contribution ∆U i

k from (B.2);

• Generate a uniform random number u ∼ U [0, 1] and if u < τλc(k|Hk, θ), then
there is spike for c-th neuron at time interval k;and

• Repeat with recursively computing conditional intensity function from equation
(3.3), until desired length of spike train.

where the value of τ is taken to be 0.05, and for the k-th step, the time-interval in
consideration is [Ts + (k − 1)τ, Ts + kτ). For simulations, we have generated a total
of K = 500 multi-neuron spikes. The spike train obtained using above procedure for
all six neurons in the first 100 time-intervals is as shown in Figure 3.2. We now apply
the proposed technique of model estimation with unknown unknowns.
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The artificially generated spike train in Figure 3.2 with the parameters for unknown
sources as in (Yang, Gupta, and Bogdan, 2019) is used as an input for the Algo-
rithm 2. The algorithm recursively computes the unknown contribution ∆U i

k and
then update the system model parameters. The iterations are fixed-point based and
the convergence is fast. The log likelihood plot (with constants ignored) is shown in
Figure 3.3. The ‘without unknowns’ case is computed with setting unknowns to zero
and, for consistency, we run the ‘without unknowns’ case with maximum ‘M-step’
iterations occurring in the proposed ‘with unknowns’ approach. As expected, there
is sharp increase in the likelihood in the first few iterations, due to incorporation of
unknowns, and it is observed that few EM iterations are sufficient for convergence.
The proposed approach results in better log-likelihood as compared to the case of no
unknowns.

3.3.3 Real-World Data

In this section, we explore various neuron spiking data recorded through real-world ex-
periments. Each dataset poses some challenges as compared to the simulated dataset
considered in the Section 3.3.1. We describe the datasets and discuss the results in
the following sections.

3.3.3.1 Mouse Somatosensory Spiking Data

The mouse somatosensory spiking dataset is recorded using a 512-channel multi-
electrode array system in an organotypic cultures of dorsal hippocampus and so-
matosensory cortex sections (Ito et al., 2014; Litke et al., 2004; Timme et al., 2014;
Nigam et al., 2016; Shimono and Beggs, 2015; Timme et al., 2016). The cultures
were not stimulated and the dataset represents spontaneous activity. The spikes were
sorted using Principle Component Analysis (PCA). The dataset is downloaded from
(Ito et al., 2016), where a total of 25 datasets are available, and hundreds of neurons
were probed to have the spiking data. In this work, we have taken a total of 8 neu-
rons to study the inter-neuronal interactions with unknown unknowns. The spiking
activity of the considered neurons is as shown in Figure 3.4.

The inter-spiking interval is having a large value for spikes at some times, and it is
very small for others. Therefore, while modeling such datasets it is possible that the
assumed model for CIF in (3.3) may not apply in its original form. The proposed
technique like any other data-driven estimators can work only if there are samples
corresponding to the associated parameters. For example, when the data is too sparse
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Figure 3.4: Multi-neuron spike train for Somatosensory
data with a total of eight neurons.
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Figure 3.5: Log likelihood at each iteration using Algo-
rithm 2 on the Somatosensory spike trains dataset.

in some time-intervals then the denominator term in equation (3.15)

K∑
k=1

Y c
j (k)∆N c

k

[
D∑

l=1
Y c

l (k)
]
,

will go to zero. It is an indication that there is no data corresponding to the j-th
term in (3.10) and hence it cannot be recovered. A simple modification would be to
increase the spiking interval length τ and take ∆N c

k as accumulated counts in that
enlarged interval. The proposed Algorithm 2 is then applied to the spike train and
the log likelihood (with constants ignored) is shown in Figure 3.5. We observe that
the convergence is fast and the likelihood increase sharply in the beginning. We also
observe that the resulting log likelihood is better as compared to the case of not
having unknowns in the model.

3.3.3.2 Mouse Retina Spiking Data

The mouse retina dataset contains neuronal responses of retinal ganglion cells to
various visual stimuli recorded in the isolated retina from lab mice (Mus Musculus)
using a 61-electrode array. The visual stimuli were displayed on a gamma-corrected
cathode-ray tube monitor and projected on the photoreceptor layer of the retina
(magnification 8.3µm/pixel; luminance range 0.5-3.8 mW/m2) from above through a
custom-made lens system (Lefebvre et al., 2008). Extracellular action potentials were
recorded (sampling rate 10 kHz) and single units were identified by a semi-automated
spike-sorting algorithm. The dataset is downloaded from (Zhang, Asari, and Meister,
2014) which comprises 16 retinal preparations. The spike trains for a total of seven
neurons is shown in Figure 3.6.
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Figure 3.6: Multi-neuron spike train for Mice Retina data
with a total of seven neurons.
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Figure 3.7: Log likelihood at each iteration using Algo-
rithm 2 on the Mice Retina spike trains dataset.

The concept of having unknown sources is better in the sense that it provides flexibility
to fill the gaps in the real-world data and the assumed model by exploiting the extra
degrees-of-freedom that the data might have. However, we have observed in this
dataset that this may not be true always, and sometimes unknown contributions are
not necessary. In particular to our model, this can be realized when the denominator
of equation (3.5)

C∑
c=1

min(q+M−1,K)∑
p=max(q−M+1,1)

min(p+M,q+M,K)∑
k=max(p+1,q+1)

γi0
k−q(c)γi0

k−p(c)∆Nk
c ,

goes to zero. This indicates that there is not enough degrees-of-freedom in the data
(and given values of unknown parameters γi

k(c)) to estimate the ∆U i0
q . In such cases,

we can set the unknown activities to zero for the corresponding q, i0 indices, or in other
words assume that there is no requirement of unknowns at q-th time step for i0-th
unknown source. The log-likelihood (with constants ignored) after this adjustment on
applying Algorithm 1 is shown in Figure 3.7. We observe that the likelihood increases
quickly and convergence occurs in only 3-5 iterations. The resulting log-likelihood is
also higher than the model estimation procedure without having unknowns.

3.4 Discussion

We have presented a multi-variate neuron system framework with the inclusion of
unknown inputs. The single neuron activity is affected by its own spiking history, the
influence from other neurons, and the unknown stimuli. The statistical framework
is built on the non-stationary likelihood of the multi-channel point process, which
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is characterized by the conditional intensity function with a generalized linear com-
bination of the covariates. The proposed method aims at increasing the likelihood
of the data, and the inclusion of unknown unknowns to minimize the discrepancies
between the data and the model. The developed algorithm is based on fixed-point
iterations and converges quickly. The proposed fixed-point method offers advantages
of independence across time and can be computed in parallel using modern multi-core
processors. Experiments on simulated spike trains and on the real-world datasets of
mouse somatosensory, retinal and cat retina show promising results in terms of like-
lihood maximization. We have observed interesting insights into degrees-of-freedom
offered by the data which sometimes suggest not to use unknown unknowns.

The proposed mathematical framework is general for non-stationary discrete time-series
in the form of spike trains with missing data (or gaps) and the contribution of un-
known sources. The developed techniques are computationally efficient especially
when the data is recorded over long time-horizon. While we relied on a log-gamma
distribution as the prior for unknown artifacts, we plan to investigate unknown un-
knowns phenomena that exhibit non-Gaussian statistical or multifractal behavior
(Xue and Bogdan, 2017). The future research will also focus on exploring applica-
tions in the domain of pattern identification in social networks of opinion dynamics,
smart cities monitoring for chemical and threat (explosive) detection and identifica-
tion/localization, etc. A critical challenge with such datasets is the huge data size,
and the computational advantages offered by the proposed techniques can make the
statistical inference tractable.
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Part II

Partial Differential Equations
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Chapter 4

Fractional Diffusion equations

Finding the exact parameters of the corresponding governing PDE is not a trivial
task. In this context, given a spatiotemporal dataset, we aim to develop an efficient
algorithm for estimating the parameters of the generalized fractional-order PDE that
models the dynamics of the process under investigation. Consequently, by identifying
these parameters, one can also investigate the physical rules modeled by the PDE. In
the results section, we analyze two types of PDEs and discuss algorithmic approaches
to determine their parameters from the time-series data. We also provide a simulation
study where we verify the correctness and effectiveness of the proposed algorithmic
approaches on deriving the exact parameters using synthetic trajectories generated
from the PDE model.

4.1 Data-Driven Approach for Analyzing Anoma-
lous Diffusion

4.1.1 Space-Time Fractional Diffusion Equation

The space-time fractional diffusion equation has been proposed in previous works as
a mathematical model to analyze anomalous diffusion (Metzler and Klafter, 2000;
Gorenflo and Mainardi, 2012; Mainardi, Luchko, and Pagnini, 2007; Saichev and
Zaslavsky, 1997; Gorenflo, Iskenderov, and Luchko, 2000; Scalas, Gorenflo, and
Mainardi, 2000). In a nutshell, the space-time fractional diffusion equation in (4.1)
consists of a fractional Riesz-Feller derivative of the order α > 0 (space-derivative)
that encodes the space variations and a fractional Caputo derivative of the order
β > 0 (time-derivative) that measures the time variations. To better generalize, we
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also consider the skewness factor in the space derivative of the diffusion equation.
Hence, the space-time fractional diffusion equation is defined as

tDβ
∗u(x, t) = D × xDα

θ u(x, t), ∀x ∈ R,∀t ∈ R+, (4.1)

where the operators xDα
θ and tDβ

∗ designate the fractional Riesz-Feller derivative of
order α and skewness θ (Feller, 1962), and the Caputo time-fractional derivative of
order β (Caputo, 1967), respectively1. The parameter D denotes the generalized
diffusion coefficient. The parameters α, β and θ satisfy the following constraints,
0 < α ≤ 2 , 0 < β ≤ 1 and |θ| ≤ min{α, 2− α}.

Given a set of time-series trajectories that record the evolution of particles or agents
that exhibits anomalous diffusion modeled by equation (4.1), without prior knowledge
about the parameters of the space-time fractional diffusion equation, our goal is to
use the dataset available to retrieve the exact fractional PDE that generates the
given time-series. Towards this end, we develop a mathematical framework where the
parameter and mathematical (operator) expression identification task is defined as a
regression problem. Indeed, the regression is formulated as a least squares problem,
where the minimization involves the theoretical and the empirical statistical (higher
order) moments (i.e., specifically the absolute moments). The choice of the statistical
moments for performing the regression is convenient because we could derive its closed
form expressions just from the generalized fractional PDE given in equation (4.1). For
the given time-series data, Xn(t), 1 ≤ n ≤ N , where N denotes the total number of
trajectories, the time empirical moments are defined as follows

M δ
t = 1

N

N∑
n=1
|Xn(t)|δ, Sδ

t = 1
N

N∑
n=1

Xn(t)⟨δ⟩, (4.2)

where x⟨δ⟩ denotes the signed absolute δ-th power of x and x⟨δ⟩ = |x|δsign(x). The
time-dependent absolute moment of the data generated according to the fractional
PDE in (4.1) is given by the following result.

Proposition 2. The time-dependent absolute moment of the order δ with 0 < δ < α
is written as follows

E[|X(t)|δ] = tδ
β
αD

δ
α ×

Γ(1− δ
α
)Γ(1 + δ

α
) cos( δπθ

2α
)

Γ(1− δ)Γ(1 + δ β
α
) cos( δπ

2 )
, (4.3)

where Γ(·) designates the gamma function.

To find the parameters of the fractional PDE in (4.1), we rely on analyzing the
higher order moments and minimize the quadratic error between the theoretical and

1The two operators are clearly defined in the supplementary material document.
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the empirical absolute higher order moments. However, due to the non-linear non-
convex expression stated in the equation (4.3), such a regression problem is non-trivial
and it is non-trivial to provide the theoretical guarantees about the convergence of a
multi-dimensional optimization algorithm used to solve the problem in one-shot. To
tackle the non-convexity, we aim to approach the parameters estimation via multi-
step optimization. For obtaining additional information from the data, we also derive
the signed absolute as in the following result.

Proposition 3. The time-dependent signed absolute moment of the order δ with
0 < δ < α is written as follows

E[X(t)⟨δ⟩] = −tδ
β
αD

δ
α ×

Γ(1− δ
α
)Γ(1 + δ

α
) sin ( δπθ

2α
)

Γ(1 + δ β
α
)Γ(1− δ) sin( δπ

2 )
. (4.4)

The detailed proofs of the above propositions are provided in Appendix C.2 and C.3.
Using the above results, the estimation of parameters is detailed in the following
section.

4.1.2 Parameter Estimation

4.1.2.1 Absolute moments approach

Starting from a dataset containing N independent trajectories (realizations of the
equation (4.1) with unknown parameters) sampled uniformly at times {t1, t2, · · · , tL},
we aim at estimating the actual parameters of the equation (4.1) via a moments-based
approach, i.e., determining the parameters using empirical moments and the theo-
retical expressions. Thus, the proposed scheme to find the parameters is mainly a
two-step approach, regression over time on one hand and over space on the other
hand. The method is summarized as follows.

For a given order δ, the log of absolute moments in equation (4.3) varies as

log(E[|X(t)|δ]) = δ
β

α
log(t) + C1, (4.5)

where C1 does not depend on t. Using the estimated empirical moments from equation
(4.2), we replace the theoretical moments with the empirical values in the equation
(4.5). The parameter ratio β/α can then be estimated by performing linear regression
of log(tl) versus log(M δ

tl
) using a total of L points (i.e., l = 1, 2, · · · , L). It is worth-

while to note that the precision in estimation of β/α can be improved upon using
multiple values of moment exponent δ for increasing the total diverse points in linear
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regression. For example, a set ∆ = {δ1, δ2, . . . , δK} can be used for having K × L
diverse points for linear regression by repeating the equation (4.5) with different δk.
Hence, we can make a trade-off between space and time, i.e., enlarging the cardinality
of ∆ when the available time-series are short, in other words when L is small.

Next, we use the results of Proposition 2 and 3 to get the ratio of E[|X(t)|δ] and
E[X(t)⟨δ⟩] as the following ratio r

r = E[X(t)⟨δ⟩]
E[|X(t)|δ] = −

tan(πδθ
2α

)
tan(πδ

2 )
. (4.6)

Upon replacing the theoretical moments with the ones derived in equation (4.2) we
can invert the tangent function to have the ratio θ/α. In addition, although the
ratio r is independent of time t, the empirical ratio of the data will possibly not
be a constant across time. We replace r with time average of the ratio of Sδ

tl
and

M δ
tl

as Sδ
tl
/M δ

tl
. From Section 4.1.1, we know that the parameter θ is constrained as

|θ| ≤ min(α, 2− α), so, we have |θ/α| ≤ 1. Next, we define the following function

wL(x) =


−1 x < −1
x −1 ≤ x ≤ 1
1 x > 1

.

Finally, the ratio of parameters θ and α can now be written as

θ

α
= wL

− 2
πδ

arctan
tan

(
πδ

2

)(
Sδ

tl

M δ
tl

) . (4.7)

As argued before, to improve the precision of the estimation, we can add diversity
by having a set of moment exponents ∆ = {δ1, δ2, . . . , δK}. For each δk ∈ ∆ (where
k = 1, 2, · · · , K), we use the equation (4.7) to obtain (̂θ/α)k, and finally obtain the
estimated ratio of parameters as (̂θ/α) = 1

K

∑K
k=1 (̂θ/α)k.

The absolute moments of order δ from Proposition 2 can be re-written as follows

E[|X(t)|δ]
tδ

β
α

= D
δ
α ×

Γ(1− δ
α
)Γ(1 + δ

α
) cos( δπθ

2α
)

Γ(1− δ)Γ(1 + δ β
α
) cos( δπ

2 )

= D
δ
α ×

πδ
α

sin(πδ
α

)
×

cos(πδθ
2α

)
Γ(1− δ)Γ(1 + δβ

α
) cos(πδ

2 )
.
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Therefore, for the given value of the order δ = δk, the estimation of α and diffusion
coefficient D can be written as the following non-linear equation

Ck =
Γ(1− δk)Γ(1 + δkβ

α
) cos(πδk

2 )
cos(πδkθ

2α
)

× E[|X(t)|δk ]
tδk

β
α

= D
δk
α ×

πδk

α

sin(πδk

α
)
. (4.8)

To solve the non-linear equation in (4.8) for α and D, we use non-linear least squares
method (trust region reflective method). The input variables to the non-linear op-
timization are the values of order δ ∈ ∆, where ∆ = {δ1, δ2, . . . , δK}. Formally, the
optimization problem is written as follows:

{D̂, α̂} = argmin
α,D

K∑
k=1

∣∣∣∣D δk
α ×

δkπ
α

sin( δkπ
α

)
− Ck

∣∣∣∣2. (4.9)

We note that the values of Ck can be efficiently estimated by first performing the
linear regression of tδ β

α vs E[|X(t)|δ] with the condition of zero intercept, and then
substituting the ratio (slope of the linear regression) in equation (4.8). The opti-
mization problem in (4.9) is non-convex, therefore, the global optimum solution is
not guaranteed by the solvers. Note that, in some scenarios, we may have a prior
knowledge about boundaries of the parameter α (i.e., αmin ≤ α ≤ αmax). Thus, we
solve the constrained optimization problem.

Finally, the values of β and θ can be estimated upon estimating α, as we already
have the ratios β/α and θ/α from equation (4.5) and equation (4.7), respectively.
The approach described is summarized as Algorithm 3.

Remark: Note that for α ̸= 2, when the order δ is close to the boundary values,
the theoretical absolute moment goes to +∞. However, the empirical one is finite, so
in order to have a small error associated to the estimated parameters, we choose the
order δ to be far enough from the end points of allowed region. Notice that, the value
of α is unknown while the condition −min{α, 1} < ℜ(δ) < α is dependent of it, so
assuming an αmin as lower bound for α is rational. We note that the Algorithm 3 is
dependent upon the solution of non-linear non-convex optimization problem in (4.9),
and, therefore, convergence to the global solution is not guaranteed. Also, we need to
provide an input set ∆ such that the absolute and signed moments are computable
for unknown α. The choice of ∆ has to be made by having some idea about lower
bound of the α parameter. To take care of these two issues together, we next present
an alternative approach in which we do not require non-linear optimization as well
as do not require to have the knowledge of ∆ set.
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Algorithm 3: Space-Time Fractional Diffusion: Parameters Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ,
∆ = {δ1, δ2, · · · , δK}

Output: Parameters: α, β, θ and D
1: for l = 1, 2, · · · , L do
2: Calculate the empirical absolute and signed moments M δ

tl
and Sδ

tl
▷ Eq.4.2

3: end for
4:
(̂

β
α

)
← m1

δ
, m1 being slope of linear regression log(t) vs log(M δ

t )

5: Get the estimate
(̂

θ
α

)
▷ Eq.4.7

6: for k = 1, 2, · · · , K do
7: Calculate the empirical absolute moments M δk

tl
, ∀l ▷ Eq.4.2

8: m2 ← slope of linear regression tδk(̂ β
α) vs M δk

t with zero intercept

9: Ck ← m2.
Γ
(

1+δk(̂ β
α)
)

Γ(1−δk) cos
(

πδk
2

)
cos
(

πδk
2 (̂ θ

α)
) ▷ Eq.4.3

10: end for
11: Find α̂, D̂ ← argmin

α,D

K∑
k=1

∣∣∣∣D δk
α ×

δkπ

α

sin( δkπ

α
)
− Ck

∣∣∣∣2: non-linear regression over space

(sinc inversion)
12: Calculate β̂, θ̂.

4.1.2.2 Log absolute Moments Approach

In this subsection, we rely on the moments of log absolute values of the trajectories.
Similar to absolute moments with order δ, the log absolute moments can be computed
as we present in the following results.

Proposition 4. The time-dependent expected log absolute value of X(t) is written as
follows

E[log |X(t)|] = β

α
log(t) + log(D)

α
+ γ

(
β

α
− 1

)
, (4.10)

where γ is the Euler-Mascheroni constant.

Next, the variance of the log absolute values of the trajectories can be written as the
following results.

Proposition 5. The variance of log absolute value of X(t) is written as follows

var(log |X(t)|) = π2

6

( 1
α2 + 1

2

)
−
(
πθ

2α

)2

. (4.11)
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It is interesting to note that the variance is independent of time as well as a function
of α and θ/α. We exploit this feature of the variance to obtain an estimate of the α
with the ratio θ/α known. Hence, the need for performing non-linear optimization in
Algorithm 1 is omitted. We also write the second moment of the log absolute values
in the following result.

Proposition 6. The time-dependent expected square of log absolute value of X(t) is
written as follows

E[(log |X(t)|)2] = β2

α2 log2(t) + 2βγ
α

(
β

α
− 1

)
log(t) + c, (4.12)

where c = π2

6

(
1

α2 + 1
2

)
−
(

πθ
2α

)2
+
(

log(D)
α

+ γ
(

β
α
− 1

))2
+ π2

6α2 (1 − β2), and γ is the
Euler-Mascheroni constant.

The proof of the Propositions 4, 5 and 6 are provided in the Appendix C.4, C.5, and
C.6, respectively. Using the above results for log absolute values, we now present
the second approach to estimate the parameters of the space-time fractional PDE in
(4.1).

We proceed similarly to the first approach of the δ order absolute moments, however,
now equating the theoretical and empirical expressions of the log absolute moments.
The empirical log absolute moments are written as

L
(1)
t = 1

N

N∑
n=1

log |Xn(t)|, L
(2)
t = 1

N

N∑
n=1

log |Xn(t)|2,

var(log |X(t)|) = 1
N − 1

N∑
n=1

(
log |Xn(t)| − L(1)

t

)2
. (4.13)

The parameter ratio β/α is estimated by performing the linear regression of log(t)
vs L(1)

t . The slope of the regression output is the estimated ratio (̂β/α). Next, the
ratio of the parameters θ and α is estimated using the same approach as described
previously in equation (4.7).

We note that upon having an estimate of the parameter ratio θ̂/α, the variance is
one-to-one function of α since α ≥ 0. Therefore, on substituting the value of θ̂/α
in equation (4.11) we compute the value of α̂. Finally, with α̂ and β̂/α known, the
value of diffusion coefficient is estimated from the intercept of the linear regression of
log(t) vs L(1)

t as D̂. The above described approach is summarized as an algorithmic
strategy in Algorithm 4.
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Algorithm 4: Space-Time Fractional Diffusion: Parameters Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ
Output: Parameters: α, β, θ and D

1: for l = 1, 2, · · · , L do
2: Calculate the empirical absolute and signed moment M δ

tl
and Sδ

tl
▷ Eq.4.2

3: Calculate log absolute moments L(1)
t ▷ Eq.4.13

4: end for
5:
(̂

β
α

)
← m, (m, c) being (slope, intercept) of linear regression L

(1)
t vs log(t)

6: Get the estimate
(̂

θ
α

)
▷ Eq.4.7

7: Calculate empirical variance of log absolute values var(log(|X(t)|)) as σ2 ▷
Eq.4.13

8: α̂←
(
σ2 6

π2 − 1
2

)− 1
2

9: D̂ ← exp
{
α̂
(
c− γ

((̂
β
α

)
− 1

))}
▷ Eq.4.3

10: Calculate β̂, θ̂.

It should be noted that the approach utilizing log absolute moments does not require a
predefined set of order values ∆. In addition, this does not suffer from the convergence
issues as there is no non-linear non-convex optimization involved.

Note: The estimated parameters in both algorithms are not guaranteed to be opti-
mal. For example, it is not straightforward to guarantee maximum likelihood sense
as solving maximum likelihood involves solution to non-convex problem. We evaluate
the efficiency of the both algorithms in the following section.

4.2 Experimental Results

As we described previously, both algorithms depend mainly on the statistical absolute
moments, statistical signed absolute moments and the expected log absolute value
of the process X(t). For this reason, we first start by validating the theoretical
expressions derived in equation (4.3), (4.4) and (4.10). We consider different scenarios
(normal diffusion equation, neutral diffusion equation (Gorenflo et al., 2002; Metzler
and Nonnenmacher, 2002; Luchko, 2012; Tarasov, 2019), space diffusion equation
(Tarasov, 2019), and time diffusion equation (Tarasov, 2019)). In these experiments,
we generate synthetic data corresponding to N = 100 trajectories simulated according
to the diffusion model under study with a generalized diffusion coefficient D = 1.
Note that the data generation procedure is presented in details in the supplementary
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information document. In Figure 4.1, we present a panel of 4 × 3 plots where we
refer by a row the scenario considered (normal, time, space, neutral diffusion) and
we plot the statistical absolute moments, statistical signed absolute moments and the
expected log absolute value of the process X(t) for an order δ = 0.001 versus time in
the columns. The signed moment deviates a little from the theoretical expression for
some scenarios, due to lack of sufficient samples. For the particular case of Figure 4.1e,
we observe that there is nearly perfect match with the theoretical expression. The
reason being, in this case, the parameters α = θ, which implies that the trajectories are
generated from a negatively skewed alpha-stable distribution, and, therefore X(t) ≤0,
∀t. We note that a similar situation happens when we have the parameters α = −θ.
In this case, we have a positive skewed alpha distribution, and therefore, X(t) ≥ 0,∀t.
In all scenarios, we can observe that the empirical statistical moments match perfectly
the theoretical ones in all scenarios. This result confirms our theoretical derivations
and motivates us to move forward with this approach.

Parameters Estimation of Synthetic Data: In this experiment, we validate the
proposed approach using artificially generated spatiotemporal data according to the
PDE model presented in equation (1). More precisely, we use the above-mentioned
schemes (Algorithm 3 and Algorithm 4) to retrieve the parameters (α, β, θ and D)
used during the data generation step. Figure 4.2 summarize several experiments done
for different diffusion models (classical, neutral, space, and time diffusion), where
we assume a set of combination of α, β and θ parameters for a generalized diffusion
coefficient D = 1. We refer the reader to (Znaidi et al., 2020) for complete results
with diffusion coefficients D = 2, 5. In the figure, we present a panel of 4×4 different
plots where a row represents the type of diffusion considered and columns 1, 2, 3 and
4 designate the parameters α, β, θ and D, respectively. In each of the sub-figure, we
plot the estimated parameter using both algorithms (blue line for Algorithm 3 and
the black line for Algorithm 4) versus the number of trajectories considered during
the estimation process. We also plot the true value as a red line, and a narrow interval
around the true value using black dashed lines. The presented blue and grey shaded
regions represent the standard deviation for the estimated parameters associated to
Algorithm 3 and Algorithm 4, respectively. All sub-figures in Figure 4.2 show that
the proposed schemes are doing well in all scenarios where we are able to retrieve
the exact set of parameters α, β, θ and D with a small/negligible error 2. Also, we
can see how the standard deviation of the estimated parameters decreases as the the
number of trajectories increases. Furthermore, we can remark that Algorithm 4 is
performing slightly better than Algorithm 3 in terms of rate of convergence. Although
the variance is quite high when fewer trajectories are considered, we remark that in
some scenarios we can get good estimates of the parameters even with reduced number
of trajectories.

2Additional simulations for other scenarios are presented in the supplementary information doc-
ument.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: The time-dependent theoretical and empirical absolute moments and signed absolute moments of order
δ = 0.001, the time-dependent theoretical and empirical expected log absolute for the following four types of diffusion
models: (4.1a), (4.1b), (4.1c) Normal diffusion equation, (4.1d), (4.1e), (4.1f) Neutral diffusion equation, (4.1g),
(4.1h), (4.1i) Space fractional diffusion equation, (4.1j), (4.1k), (4.1l) Time fractional diffusion equation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.2: Determining the parameters of the space-time fractional diffusion via the two proposed algorithms while
varying the number of trajectories and the generalized diffusion coefficient D = 1. The dotted line indicate 2%
error tube around the original parameter value in the red: (4.2a, 4.2b, 4.2c, 4.2d) Normal diffusion equation
(α = 2, β = 1, θ = 0), (4.2e, 4.2f, 4.2g, 4.2h) Neutral diffusion equation (α = 0.5, β = 0.5, θ = 0.5), (4.2i, 4.2j,
4.2k, 4.2l) Space fractional diffusion equation (α = 0.5, β = 1, θ = 0.25), (4.2m, 4.2n, 4.2o, 4.2p) Time fractional
diffusion equation (α = 2, β = 0.5, θ = 0).
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4.3 Discussion

Understanding complex dynamics remains a challenging task when their generative
model is unknown. This task is more complicated when it comes to analyze spatiotem-
poral kinetics and infer the model that dictate their evolution. Although, the physics
that drive the dynamics are unknowns, data-driven based approaches are prominent
tools to discover the physical laws / rules governing complex observed dynamics (from
heterogeneous, sparse, scarce or even noisy data). Indeed, such a discovery plays a
crucial role in diverse fields ranging from system biology, neuroscience, econophysics
to social studies. Towards addressing this goal, in this chapter, we have considered a
generalized space-time fractional PDE and have developed an effective, rigorous and
robust algorithmic strategies to estimate the parameters and so identify the main
mathematical operators appearing in the PDE.

In contrast to prior work, we investigated the effectiveness and robustness of the
proposed algorithmic approach for estimating the correct parameters as a function of
the available number of trajectories. From our simulation results, we observe that for
all considered types of diffusion models except the classical one (i.e., all combination
of the parameters α, β, θ, and D), a few number of recorded time-series (less than
100 trajectories) is required to attain the correct estimation of the PDE parameters
with less then 2% confidence interval. For the case of the normal diffusion (i.e., except
for the case α = 2 and β = 1 ), we may need more trajectories to achieve similar
accuracy. Therefore, we hope that the proposed algorithms will help the community
to better analyze complex spatiotemporal data, in order to unravel new physical laws
in different applications (social networks, neuroscience, etc.) and decipher the causal
interdependence between different processes.

This mathematical formalism can be further developed and generalized to include
additional operators and take into account advection phenomena as well as combined
with other advanced statistics and information theory inspired methods to discrimi-
nate among various mathematical expressions (operators) in order to either identify
the dominant physical phenomenon (or rule) governing the measurements or to deter-
mine the degree to which multiple physical laws contribute to the observed dynamics.
Also, analyzing noisy data originated from real world applications will be taken into
account in order to cope with complex scenario. We plan to build on these grounds,
enrich the mathematical formalism and contribute to a significant paradigm shift in
the context of data-driven discovery architectures of physical phenomena as well as
enabling accurate predictions concerning complex evolving systems without requiring
to know the regimes of variation for parameters, the types of mathematical operators
or the fact that the data should be sampled at a particular level.
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Chapter 5

Operator Learning for Partial
Differential Equations

We incorporate the multiwavelet filters derived using a variety of the orthogonal
polynomial (OP) basis into our operator learning model, and show that the proposed
architecture outperforms the existing neural operators. Our main contributions are as
follows: (i) Based on some fundamental properties of the integral operator’s kernel, we
develop a multiwavelet-based model which learns the operator map efficiently. (ii) For
the 1-D dataset of non-linear Korteweg-de Vries and Burgers equations, we observe
an order of magnitude improvement in the relative L2 error (Section 5.2.1, 5.2.3).
(iii) We demonstrate that the proposed model is in validation with the theoretical
properties of the pseudo-differential operator (Section 5.2.2). (iv) We show how the
proposed multiwavelet-based model is robust towards the fluctuation strength of the
input signal (Section 5.2.1). (v) Next, we demonstrate the applicability on higher
dimensions of 2-D Darcy flow equation (Section 5.2.4), and finally show that the
proposed approach can learn at lower resolutions and generalize to higher resolutions.

5.1 Operator Learning using Multiwavelet Trans-
form

We start by defining the problem of operator learning in Section 5.1.1. Section 5.1.2
defines the multiwavelet transform for the proposed operator learning problem and
derives the necessary transformation operations across different scales. Section 5.1.3
outlines the proposed operator learning model. Finally, Section 5.1.4 lists some of
the useful properties of the operators which leads to an efficient implementation of
multiwavelet-based models.
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5.1.1 Problem Setup

Given two functions a(x) and u(x) with x ∈ D, the operator is a map T such that
Ta = u. Formally, let A and U be two Sobolev spaces Hs,p (s > 0, p ≥ 1), then the
operator T is such that T : A → U . The Sobolev spaces are particularly useful in
the analysis of partial differential equations (PDEs), and we restrict our attention to
s > 0 and p = 2. Note that, for s = 0, the H0,p coincides with Lp, and, f ∈ H0,p does
not necessarily have derivatives in Lp. We choose p = 2 in order to be able to define
projections with respect to (w.r.t.) measures µ in a Hilbert space structure.

We take the operator T as an integral operator with the kernel K : D×D → L2 such
that

Ta(x) =
∫

D
K(x, y)a(y)dy. (5.1)

For the case of inhomogeneous linear PDEs, Lu = f , with f being the forcing func-
tion, L is the differential operator, and the associated kernel is commonly termed as
Green function. In our case, we do not put the restriction of linearity on the operator.
From eq. (5.1), it is apparent that learning the complete kernel K(., .) would essen-
tially solve the operator map problem, but it is not necessarily a numerically feasible
solution. Indeed, a better approach would be to exploit possible useful properties (see
Section 5.1.4) such that a compact representation of the kernel can be made. For an
efficient representation of the operator kernel, we need an appropriate subspace (or
sequence of subspaces), and projection tools to map to such spaces.

Norm with respect to measures: Projecting a given function onto a fixed basis
would require a measure dependent distance. For two functions f and g, we take
the inner product w.r.t measure µ as ⟨f, g⟩µ =

∫
f(x)g(x)dµ(x), and the associated

norm as ||f ||µ = ⟨f, f⟩1/2
µ . We now discuss the next ingredient, which refers to the

subspaces required to project the kernel.

5.1.2 Multiwavelet Transform

In this section, we briefly overview the concept of multiwavelets (Alpert et al., 2002)
and extend it to work with non-uniform measures at each scale. The multiwavelet
transform synergizes the advantages of orthogonal polynomials (OPs) as well as the
wavelets concepts, both of which have a rich history in the signal processing. The
properties of wavelet bases like (i) vanishing moments, and (ii) orthogonality can
effectively be used to create a system of coordinates in which a wide class of operators
(see Section 5.1.4) have nice representation. Multiwavelets go few steps further, and
provide a fine-grained representation using OPs, but also act as basis on a finite
interval. For the rest of this section, we restrict our attention to the interval [0, 1];
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however, the transformation to any finite interval [a, b] could be straightforwardly
obtained by an appropriate shift and scale.

Multi Resolution Analysis: We begin by defining the space of piecewise polyno-
mial functions, for k ∈ N and n ∈ Z+ ∪ {0} as, Vk

n = ⋃2n−1
l=0 {f |deg(f) < k for x ∈

(2−nl, 2−n(l + 1)) ∧ 0, elsewhere}. Clearly, dim(Vk
n) = 2nk, and for subsequent n,

each subspace is contained in another as shown by the following relation:

Vk
0 ⊂ Vk

1 . . . ⊂ Vk
n−1 ⊂ Vk

n ⊂ . . . . (5.2)

Similarly, we define the sequence of measures µ0, µ1, . . . such that f ∈ Vk
n is measur-

able w.r.t. µn and the norm of f is taken as ||f || = ⟨f, f⟩1/2
µn

. Next, since Vk
n−1 ⊂ Vk

n,
we define the multiwavelet subspace as Wk

n for n ∈ Z+ ∪ {0}, such that

Vk
n+1 = Vk

n

⊕
Wk

n, Vk
n ⊥Wk

n. (5.3)

For a given OP basis for Vk
0 as ϕ0, ϕ1, . . . , ϕk−1 w.r.t. measure µ0, a basis of the

subsequent spaces Vk
n, n > 1 can be obtained by shift and scale (hence the name,

multi-scale) operations of the original basis as follows:

ϕn
jl(x) = 2n/2ϕj(2nx− l), j = 0, 1, . . . , k−1, l = 0, 1, . . . , 2n−1,w.r.t. µn, (5.4)

where, µn is obtained as the collections of shift and scale of µ0, accordingly.

Multiwavelets: For the multiwavelet subspace Wk
0, the orthonormal basis (of piece-

wise polynomials) are taken as ψ0, ψ1, . . . , ψk−1 such that ⟨ψi, ψj⟩µ0 = 0 for i ̸= j and
1, otherwise. From eq. (5.3), Vk

n ⊥ Wk
n, and since Vk

n spans the polynomials of
degree at most k, therefore, we conclude that

1∫
0

xiψj(x)dµ0(x) = 0, ∀ 0 ≤ j, i < k. (vanishing moments) (5.5)

Similarly to eq. (5.4), a basis for multiwavelet subspace Wk
n are obtained by shift and

scale of ψi as ψn
jl(x) = 2n/2ψj(2nx− l) and ψn

jl are orthonormal w.r.t. measure µn, i.e.
⟨ψn

jl, ψ
n
j′l′⟩µn = 1 if j = j′, l = l′, and 0 otherwise. Therefore, for a given OP basis for

Vk
0 (for example, Legendre, Chebyshev polynomials), we only require to compute ψi,

and a complete basis set at all the scales can be obtained using scale/shift of ϕi, ψi.

Note: Since Vk
1 = Vk

0
⊕Wk

0 from eq. (5.3), therefore, for a given basis ϕi of Vk
0

w.r.t. measure µ0 and ϕn
jl as a basis for Vk

1 w.r.t. µ1, a set of basis ψi can be obtained
by applying Gram-Schmidt orthogonalization using appropriate measures. We refer
the reader to supplementary materials for the detailed procedure.
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Note: Since Vk
0 and Wk

0 lives in Vk
1, therefore, ϕi, ψi can be written as a linear

combination of the basis of V k
1 . We term these linear coefficients as multiwavelet

decomposition filters (H(0), H(1), G(0), G(1)), since they are transforming a fine n = 1
to coarse scale n = 0. A uniform measure (µ0) version is discussed in (Alpert et al.,
2002), and we extend it to any arbitrary measure by including the correction terms
Σ(0) and Σ(1). We refer to Appendix D.2 for the complete details. The capability of
using the non-uniform measures enables us to apply the same approach to any OP
basis with finite domain, for example, Chebyshev, Gegenbauer, etc.

For a given f(x), the multiscale, multiwavelet coefficients at the scale n are defined
as sn

l = [⟨f, ϕn
il⟩µn ]k−1

i=0 , dn
l = [⟨f, ψn

il⟩µn ]k−1
i=0 , respectively, w.r.t. measure µn with

sn
l ,dn

l ∈ Rk×2n . The decomposition / reconstruction across scales is written as

sn
l = H(0)sn+1

2l +H(1)sn+1
2l+1, (5.6)

dn
l = G(0)sn+1

2l +H(1)sn+1
2l+1, (5.7)

sn+1
2l = Σ(0)(H(0) T sn

l +G(0) T dn
l ), (5.8)

sn+1
2l+1 = Σ(1)(H(1) T sn

l +G(1) T dn
l ). (5.9)

The wavelet (and also multiwavelet) transformation can be straightforwardly ex-
tended to multiple dimensions using tensor product of the bases. For our purpose, a
function f ∈ Rd has multiscale, multiwavelet coefficients sn

l ,dn
l ∈ Rk×...×k×2n which

are also recursively obtained by replacing the filters in eq. (5.6)-(5.7) with their
Kronecker product, specifically, H(0) with H(0)⊗H(0)⊗ . . . H(0), where ⊗ is the Kro-
necker product repeated d times. For eq. (5.8)-(5.9) H(0)Σ(0) (and similarly others)
are replaced with their d-times Kronecker product.

Non-Standard Form: The multiwavelet representation of the operator kernelK(x, y)
can be obtained by an appropriate tensor product of the multiscale and multiwavelet
basis. One issue, however, in this approach, is that the basis at various scales are
coupled because of the tensor product. To untangle the basis at various scales, we use
a trick as proposed in (Beylkin, Coifman, and Rokhlin, 1991) called the non-standard
wavelet representation. The extra mathematical price paid for the non-standard rep-
resentation, actually serves as a ground for reducing the proposed model complexity
(see Section 5.1.3), thus, providing data efficiency. For the operator under consid-
eration T with integral kernel K(x, y), let us denote Tn as the projection of T on
V k

n , which essentially is obtained by projecting the kernel K onto basis ϕn
jl w.r.t.

measure µn. If Pn is the projection operator such that Pnf = ∑
j,l⟨f, ϕn

jl⟩µnϕ
n
jl, then

Tn = PnTPn. Using telescopic sum, Tn is expanded as

Tn =
∑n

i=L+1(QiTQi +QiTPi−1 + Pi−1TQi) + PLTPL, (5.10)
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Figure 5.1: Multiwavelet representation of the Kernel. (i) Given kernel K(x, y) of an integral operator T ,
(ii) the bases with different measures (µ0, µ1) at two different scales (coarse=0, fine=1) projects the kernel into 3
components Ai, Bi, Ci. (iii) The decomposition yields a sparse structure, and the entries with absolute magnitude
values exceeding 1e−8 are shown in black. Given projections at any scale, the finer / coarser scale projections can be
obtained by reconstruction / decomposition using a fixed multiwavelet filters H(i) and G(i), i = 0, 1.

where, Qi = Pi − Pi−1 and L is the coarsest scale under consideration (L ≥ 0).
From eq. (5.3), it is apparent that Qi is the multiwavelet operator. Next, we denote
Ai = QiTQi, Bi = QiTPi−1, Ci = Pi−1TQi, and T̄ = PLTPL. In Figure 5.1, we show
the non-standard multiwavelet transform for a given kernel K(x, y). The transfor-
mation has a sparse banded structure due to smoothness property of the kernel (see
Section 5.1.4). For the operator T such that Ta = u, the map under multiwavelet
domain is written as

Un
d l = And

n
l +Bns

n
l ,

Un
ŝ l = Cnd

n
l ,

UL
s l = T̄ sL

l ,

(5.11)

where, (Un
s l, U

n
d l)/(sn

l , d
n
l ) are the multiscale, multiwavelet coefficients of u/a, respec-

tively, and L is the coarsest scale under consideration. With these mathematical
concepts, we now proceed to define our multiwavelet-based operator learning model
in the Section 5.1.3.

5.1.3 Multiwavelet-based Model

Based on the discussion in Section 5.1.2, we propose a multiwavelet-based model
(MWT) as shown in Figure 5.2. For a given input/output as a/u, the goal of the
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+
+

decomposition reconstruction

Figure 5.2: MWT model architecture. (Left) Decomposition cell using 4 neural networks (NNs) A, B and C,
and T (for the coarsest scale L) performs multiwavelet decomposition from scale n + 1 to n. (Right) Reconstruction
module using pre-defined filters H(i), G(i) performs inverse multiwavelet transform from scale n − 1 to n.

MWT model is to map the multiwavelet-transform of the input (sN
l ) to output (UN

s l )
at the finest scale N . The model consists of two parts: (i) Decomposition (dec),
and (ii) Reconstruction (rec). The dec acts as a recurrent network, and at each it-
eration the input is sn+1. Using (5.6)-(5.7), the input is used to obtain multiscale
and multiwavelet coefficients at a coarser level sn and dn, respectively. Next, to
compute the multiscale/multiwavelet coefficients of the output u, we approximate
the non-standard kernel decomposition from (5.11) using four neural networks (NNs)
A,B,C and T̄ such that Un

d l ≈ AθA
(dn

l ) + BθB
(sn

l ), Un
ŝ l ≈ CθC

(dn
l ),∀ 0 ≤ n < L,

and UL
s l ≈ T̄θT̄

(sL
l ). This is a ladder-down approach, and the dec part performs the

decimation of signal (factor 1/2), running for a maximum of L cycles, L < log2(M)
for a given input sequence of size M . Finally, the rec module collects the constituent
terms Un

s l, U
n
ŝ l, U

n
d l (obtained using the dec module) and performs a ladder-up opera-

tion to compute the multiscale coefficients of the output at a finer scale n + 1 using
(5.8)-(5.9). The iterations continue until the finest scale N is obtained for the output.

At each iteration, the filters in dec module downsamples the input, but compared
to popular techniques (e.g., maxpool), the input is only transformed to a coarser
multiscale/multiwavelet space. By virtue of its design, since the non-standard wavelet
representation does not have inter-scale interactions, it basically allows us to reuse the
same kernel NNs A,B,C at different scales. A follow-up advantage of this approach
is that the model is resolution independent, since the recurrent structure of dec is
input invariant, and for a different input size M , only the number of iterations would
possibly change for a maximum of log2 M . The reuse of A,B,C by re-training at
various scales also enable us to learn an expressive model with fewer parameters
(θA, θB, θC , θT̄ ). We see in Section 5.2, that even a single-layered CNN for A,B,C is
sufficient for learning the operator.

The dec / rec module uses the filter matrices which are fixed beforehand, therefore,
this part does not require any training. The model does not work for any arbitrary
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choice of fixed matrices H,G. We show in Section 5.2.4 that for randomly selected
matrices, the model does not learn, which validates that careful construction of filter
matrices is necessary.

5.1.4 Operators Properties

This section outlines the definition of the integral kernels that are typically useful in
an efficient compression of the operators through multiwavelets. We then discuss a
fundamental property of the pseudo-differential operator.

Definition 5.1 ((Meyer, Coifman, and Salinger, 1997)). Calderón-Zygmund Op-
erator. The integral operators that have kernel K(x, y) which is smooth away from
the diagonal, and satisfy the following.

|K(x, y)| ≤ 1
|x− y|

,

|∂M
x K(x, y)|+ |∂M

y K(x, y)| ≤ C0

|x− y|M+1 .
(5.12)

The smooth functions with decaying derivatives are gold to the multiwavelet trans-
form. Note that, smoothness implies Taylor series expansion, and the multiwavelet
transform with sufficiently large k zeroes out the initial k terms of the expansion due to
vanishing moments property (5.5). This is how multiwavelet sparsifies the kernel (see
Figure 5.1 where K(x, y) is smooth). Although, the definition of Calderón-Zygmund
is simple (singularities only at the diagonal), but the multiwavelets are capable to
compresses the kernel as long as the number of singularities are finite.

The next property, from (Chou and Guthart, 2000), points out that with input/output
being single-dimensional functions, for any pseudo-differential operator (with smooth
coefficients), the singularity at the diagonal is also well-characterized.

Property 5.1. Smoothness of Pseudo-Differential Operator. For the integral
kernel K(x,y) of a pseudo-differential operator, K(x, y) ∈ C∞ ∀x ̸= y, and for x = y,
K(x, y) ∈ CT −1, where T + 1 is the highest derivative order in the given pseudo-
differential equation.

Property 5.1 implies that, for the class of pseudo-differential operator, and any set
of basis with the initial J vanishing moments, the projection of kernel onto such
bases will have the diagonal dominating the non-diagonal entries, exponentially, if
J > T − 1 (Chou and Guthart, 2000). For the case of multiwavelet basis with k OPs,
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J = k (from eq. (5.5)). Therefore, k > T − 1 sparsifies the kernel projection onto
multiwavelets, for a fixed number of bits precision ϵ. We see the implication of the
Property 5.1 on our proposed model in the Section 5.2.2.

5.2 Empirical Evaluation

In this section, we evaluate the multiwavelet-based model (MWT) on several PDE
datasets. We show that the proposed MWT model not only exhibits orders of magni-
tude higher accuracy when compared against the state-of-the-art (Sota) approaches
but also works consistently well under different input conditions without parameter
tuning. From a numerical perspective, we take the data as point-wise evaluations
of the input and output functions. Specifically, we have the dataset (ai, ui) with
ai = a(xi), ui = u(xi) for x1, x2, . . . , xN ∈ D, where xi are M -point discretization of
the domain D. Unless stated otherwise, the training set is of size 1000 while test is
of size 200.

Model architectures: Unless otherwise stated, the NNs A,B and C in the proposed
model (Figure 5.2) are chosen as a single-layered CNNs following a linear layer, while
T̄ is taken as single k × k linear layer. We choose k = 4 in all our experiments,
and the OP basis as Legendre (Leg), Chebyshev (Chb) with uniform, non-uniform
measure µ0, respectively. The model in Figure 5.2 is treated as single layer, and for
1D equations, we cascade 2 multiwavelet layers, while for 2D dataset, we use a total
4 layers with ReLU non-linearity.

From a mathematical viewpoint, the dec and rec modules in Figure 5.2 transform
only the multiscale and multiwavelet coefficients. However, the input and output to
the model are point-wise function samples, i.e., (ai, ui). A remedy around this is to
take the data sequence, and construct hypothetical functions fa = ∑N

i=1 aiϕ
n
ji and

fu = ∑N
i=1 uiϕ

n
ji. Clearly, fa, fu lives in V k

n with n = log2 N . Now the model can be
used with s(n) = ai and U (n)

s = ui. Note that fa, fu are not explicitly used, but only
a matter of convention.

Benchmark models: We compare our MWT model using two different OP basis
(Leg, Chb) with the most recent successful neural operators. Specifically, we consider
the graph neural operator (GNO) (Li et al., 2020b), the multipole graph neural opera-
tor (MGNO) (Li et al., 2020c), the LNO which makes a low-rank (r) representation
of the operator kernel K(x, y) (also similar to unstacked DeepONet (Lu, Jin, and
Karniadakis, 2020)), and the Fourier neural operator (FNO ) (Li et al., 2020a). We
experiment on three competent datasets setup by the work of FNO (Burgers’ equation
(1-D), Darcy Flow (2-D), and Navier-Stokes equation (time-varying 2-D)). In addi-
tion, we also experiment with Korteweg-de Vries equation (1-D). For the 1-D cases, a
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Networks s = 64 s = 128 s = 256 s = 512 s = 1024
MWT Leg 0.00338 0.00375 0.00418 0.00393 0.00389
MWT Cheb 0.00715 0.00712 0.00604 0.00769 0.00675
FNO 0.0125 0.0124 0.0125 0.0122 0.0126
MGNO 0.1296 0.1515 0.1355 0.1345 0.1363
LNO 0.0429 0.0557 0.0414 0.0425 0.0447
GNO 0.0789 0.0760 0.0695 0.0699 0.0721

Table 5.1: Korteweg-de Vries (KdV) equation benchmarks for different input resolution s. Top: Our methods.
Bottom: previous works of Neural operator.

modified FNO with careful parameter selection and removal of Batch-normalization
layers results in a better performance compared with the original FNO, and we use
it in our experiments. The MWT model demonstrates the highest accuracy in all the
experiments. The MWT model also shows the ability to learn the function mapping
through lower-resolution data, and able to generalize to higher resolutions.

All the models (including ours) are trained for a total of 500 epochs using Adam
optimizer with an initial learning rate (LR) of 0.001. The LR decays after every 100
epochs with a factor of γ = 0.5. The loss function is taken as relative L2 error (Li
et al., 2020a). All of the experiments are performed on a single Nvidia V100 32 GB
GPU, and the results are averaged over a total of 3 seeds.

5.2.1 Korteweg-de Vries (KdV) Equation

The Korteweg-de Vries (KdV) equation was first proposed by Boussinesq (Boussinesq,
1877) and rediscovered by Korteweg and de Vries (Darrigol, 2005). KdV is a 1-D
non-linear PDE commonly used to describe the non-linear shallow water waves. For
a given field u(x, t), the dynamics takes the following form:

∂u

∂t
= −0.5u∂u

∂x
− ∂3u

∂x3 , x ∈ (0, 1), t ∈ (0, 1]

u0(x) = u(x, t = 0)
(5.13)

The task for the neural operator is to learn the mapping of the initial condition
u0(x) to the solutions u(x, t = 1). We generate the initial condition in Gaussian
random fields according to u0 ∼ N (0, 74(−∆ + 72I)−2.5) with periodic boundary
conditions. The equation is numerically solved using chebfun package (Driscoll, Hale,
and Trefethen, 2014) with a resolution 210, and datasets with lower resolutions are
obtained by sub-sampling the highest resolution data set.
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Figure 5.3: The output of the KdV equation. (Left) An input u0(x) with λ = 0.02. (Right) The predicted output
of the MWT Leg model learning the high fluctuations.

Varying resolution: The experimental results of the KdV equation for different
input resolutions s are shown in Table 5.1. We see that, compared to any of the
benchmarks, our proposed MWT Leg exhibits the lowest relative error and is lowest
nearly by an order of magnitude. Even in the case of the resolution of 64, the
relative error is low, which means that a sparse data set with a coarse resolution
of 64 is sufficient for the neural operator to learn the function mapping between
infinite-dimensional spaces.

Varying fluctuations: We now vary the smoothness of the input function u0(x, 0)
by controlling the parameter λ, where low values of λ imply more frequent fluctuations
and λ → 0 reaches the Brownian motion limit (Filip, Javeed, and Trefethen, 2019).
To isolate the importance of incorporating the multiwavelet transformation, we use
the same convolution operation as in FNO, i.e., Fourier transform-based convolution
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FNO:16

Figure 5.4: Comparing MWT by varying the degree
of fluctuations λ in the input with resolution s =
1024. For each convolution, we fix the number of
Fourier bases as km. For FNO, the width is 64.

with different modes km (only single-layer)
for A,B,C. We see in Figure 5.3 that MWT
model consistently outperforms the recent
baselines for all the values of λ considered. A
sample input/output from test set is shown
in the Figure 5.3. The FNO model with
higher values of km has better performance
due to more Fourier bases for representing
the high-frequency signal, while MWT does
better even with low modes in its A,B,C
CNNs, highlighting the importance of using
wavelet-based filters in the signal processing.
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5.2.2 Theoretical Properties Val-
idation

We test the ability of the proposed MWT model to capture the theoretical properties
of the pseudo-differential operator hereafter. Towards that, we consider the Euler-
Bernoulli equation (Timoshenko, 1983) that models the vertical displacement of a
finite length beam over time. A Fourier transform version of the beam equation with
the constraint of both ends being clamped is as follows:

∂4u

∂x
− ω2u = f(x), ∂u

∂x

∣∣∣∣
x=0
x=1 = 0,

u(0) = u(1) = 0,
(5.14)

where u(x) is the Fourier transform of the time-varying beam displacement, ω is
the frequency, f(x) is the applied force. The Euler-Bernoulli is a pseudo-differential
equation with the maximum derivative order T + 1 = 4. We take the task of learning
the map from f to u. In Figure 5.5, we see that for k ≥ 3, the models relative error
across epochs is similar, however, they are different for k < 3, which is in accordance
with the Property 5.1. For k < 3, the multiwavelets will not be able to annihilate
the diagonal of the kernel which is CT −1, hence, sparsification cannot occur, and the
model learns slow.

5.2.3 Burgers’ Equation

The 1-D Burgers’ equation is a non-linear PDE occurring in various areas of applied
mathematics. For a given field u(x, t) and diffusion coefficient v, the 1-D Burgers’
equation reads as

∂u

∂t
= −u∂u

∂x
+ v

∂2u

∂x2 , x ∈ (0, 2π), t ∈ (0, 1],

u0(x) = u(x, t = 0).
(5.15)

The task for the neural operator is to learn the mapping of initial condition u(x, t = 0)
to the solutions at t = 1 u(x, t = 1). To compare with many advanced neural
operators under the same conditions, we use the Burgers’ data and the results that
have been published in (Li et al., 2020a) and (Li et al., 2020c). The initial condition
is sampled as Gaussian random fields where u0 ∼ N (0, 54(−∆+52I)−2) with periodic
boundary conditions. ∆ is the Laplacian, meaning the initial conditions are sampled
by sampling its first several coefficients from a Gaussian distribution. In the Burgers’
equation, v is set to 0.1. The equation is solved with resolution 213, and the data
with lower resolutions are obtained by sub-sampling the highest resolution data set.
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Figure 5.5: Relative L2 error vs epochs for MWT Leg
with different number of OP basis k = 1, . . . , 6.
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Figure 5.6: Burgers’ Equation validation at various input
resolution s. Our methods: MWT Leg, Chb.

The results of the experiments on Burgers’ equation for different resolutions are shown
in Figure 5.6. Compared to any of the benchmarks, our MWT Leg obtains the lowest
relative error, which is an order of magnitude lower than the state-of-the-art. It’s
worth noting that even in the case of low resolution, MWT Leg still maintains a very
low error rate, which shows its potential for learning the function mapping through
low-resolution data, that is, the ability to map between infinite-dimensional spaces
by learning a limited finite-dimensional spaces mapping.

5.2.4 Darcy Flow

Darcy flow formulated by Darcy (Darcy, 1856) is one of the basic relationships of
hydrogeology, describing the flow of a fluid through a porous medium. We experiment
on the steady-state of the 2-D Darcy flow equation on the unit box, where it takes
the following form:

∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2 (5.16)

We set the experiments to learn the operator mapping the coefficient a(x) to the
solution u(x). The coefficients are generated according to a ∼ N (0, (−∆ + 32I)−2),
where ∆ is the Laplacian with zero Neumann boundary conditions. The threshold
of a(x) is set to achieve ellipticity. The solutions u(x) are obtained by using a 2nd-
order finite difference scheme on a 512 × 512 grid. Data sets of lower resolution are
sub-sampled from the original data set.

The results of the experiments on Darcy Flow for different resolutions are shown in
Table 5.2. MWT Leg again obtains the lowest relative error compared to other neural
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Networks s = 32 s = 64 s = 128 s = 256 s=512
MWT Leg 0.0152 0.00899 0.00747 0.00722 0.00654
MWT Chb 0.0174 0.0108 0.00872 0.00892 0.00891
MWT Rnd 0.2435 0.2434 0.2434 0.2431 0.2432
FNO 0.0177 0.0121 0.0111 0.0107 0.0106
MGNO 0.0501 0.0519 0.0547 0.0542 -
LNO 0.0524 0.0457 0.0453 0.0428 -

Table 5.2: Benchmarks on Darcy Flow equation at various input resolution s. Top: Our methods. MWT Rnd
instantiate random entries of the filter matrices in (5.6)-(5.9). Bottom: prior works on Neural operator.

operators at various resolutions. We also perform an additional experiment, in which
the multiwavelet filters H(i), G(i), i = 0, 1 are replaced with random values (properly
normalized). We see in Table 5.2, that MWT Rnd does not learn the operator map,
in fact, its performance is worse than all the models. This signifies the importance of
the careful choice of the filter matrices.

5.2.5 Navier-Stokes Equation

Navier-Stokes equations (Acheson, 1991; Batchelor and Batchelor, 2000) describe the
motion of viscous fluid substances, which can be used to model the ocean currents,
the weather, and air flow. We experiment on the 2-D Navier-Stokes equation for a
viscous, incompressible fluid in vorticity form on the unit torus, where it takes the
following form:

∂w(x, t)
∂t

+ u(x, t) · ∇w(x, t)− ν∆w(x, t) = f(x), x ∈ (0, 1)2, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ],
w0(x) = w(x, t = 0), x ∈ (0, 1)2

(5.17)

We set the experiments to learn the operator mapping the vorticity w up to time
10 to w at a later time T > 10. More specifically, task for the neural operator is to
map the first T time units to last T − 10 time units of vorticity w. To compare with
the state-of-the-art model FNO (Li et al., 2020a) and other configurations under the
same conditions, we use the same Navier-Stokes’ data and the results that have been
published in (Li et al., 2020a). The initial condition is sampled as Gaussian random
fields where w0 ∼ N (0, 7 3

2 (−∆ + 72I)−2.5) with periodic boundary conditions. The
forcing function f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))). The experiments
are conducted with 1⃝ the viscosities ν = 1e− 3, the final time T = 50, the number
of training pairs N = 1000; 2⃝ ν = 1e − 4, T = 30, N = 1000; 3⃝ ν = 1e − 4, T =
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Networks
ν = 1e− 3
T = 50
N = 1000

ν = 1e− 4
T = 30
N = 1000

ν = 1e−4
T = 30
N = 10000

ν = 1e− 5
T = 20
N = 1000

MWT Leg 0.00625 0.1518 0.0667 0.1541
MWT Chb 0.00720 0.1574 0.0720 0.1667
FNO-3D 0.0086 0.1918 0.0820 0.1893
FNO-2D 0.0128 0.1559 0.0973 0.1556
U-Net 0.0245 0.2051 0.1190 0.1982
TF-Net 0.0225 0.2253 0.1168 0.2268
Res-Net 0.0701 0.2871 0.2311 0.2753

Table 5.3: Navier-Stokes Equation validation at various viscosities ν. Top: Our methods. Bottom: previous works of
Neural operators and other deep learning models.

30, N = 10000; 4⃝ ν = 1e − 5, T = 20, N = 1000. The data sets are generated on a
256× 256 grid and are subsampled to 64× 64.

We see in Table 5.3 that the proposed MWT Leg outperforms the existing Neural
operators as well as other deep NN benchmarks. The MWT models have used a
2-D multiwavelet transform with k = 3 for the vorticity w, and 3-D convolutions
in the A,B,C NNs for estimating the time-correlated kernels. The MWT models
(both Leg and Chb) are trained for 500 epochs for all the experiments except for
N = 10000, T = 30, ν = 1e − 4 case where the models are trained for 200 epochs.
Note that similar to FNO-2D, a time-recurrent version of the MWT models could
also be trained and most likely will improve the resulting L2 error for the less data
setups like N = 1000, ν = 1e − 4 and N = 1000, ν = 1e − 5. However, in this work
we have only experimented with the 3d convolutions (for A,B,C) version.

5.2.6 Prediction at Higher resolutions

The proposed multiwavelets-based operator learning model is resolution-invariant by
design. Upon learning an operator map between the function spaces, the proposed
models have the ability to generalize beyond the training resolution. Next, we evaluate
the resolution extension property of the MWT models using the Burgers’ equation
dataset as described in the Section 5.2.3. A pipeline for the experiment is shown in
Figure 5.7. The numerical results for the experiments are shown in Table 5.4. We see
that on training with a lower resolution, for example, s = 256, the prediction error
at 10X higher resolution s = 2048 is 0.0226, or 2.26%. A sample input/output for
learning at s = 256 while predicting a s = 8192 resolution is shown in Figure 5.7.
Also, learning at an even coarser resolution of s = 128, the proposed model can

69



Train
Tests = 2048 s = 4096 s = 8192

s=128 0.0368 0.0389 0.0456
s=256 0.0226 0.0281 0.0321
s=512 0.0140 0.0191 0.0241

Table 5.4: MWT Leg model trained at lower resolutions can predict the output at higher resolutions.
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Figure 5.7: Prediction at higher resolution: The proposed model (MWT) learns the function mapping using
the data with a coarse resolution, and can predict the output at a higher resolution. (i) The resolution-extension
experiment pipeline. (ii) An example of down-sampling of the associated functions used in the training. (iii) We
show two test samples with example-1 marked as blue while example-2 is marked as red. Left: input functions (u0)
of the examples. Right: corresponding outputs u(x, 1) at s = 8192 from MWT Leg (trained on s = 256) of the 2
examples, and their higher-resolution (s = 8192) ground truth (dotted line).

predict the output of 26 times the resolution (i.e., s = 8192) data with an relative L2
error of 4.56%.
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Networks s = 64 s = 128 s = 256 s = 512 s = 1024
MWT Leg 0.00190 0.00214 0.00204 0.00201 0.00211
MWT Cheb 0.00239 0.00241 0.00221 0.00289 0.00348
FNO 0.00335 0.00330 0.00375 0.00402 0.00456
MGNO 0.0761 0.0593 0.0724 0.0940 0.0660
LNO 0.0759 0.0756 0.0673 0.0807 0.0792
GNO 0.0871 0.0801 0.0722 0.0798 0.0777

Table 5.5: Korteweg-de Vries (KdV) equation benchmarks for different input resolution s with input u0(x) sampled
from a squared exponential kernel. Top: Our methods. Bottom: previous works of Neural operator.

5.2.7 Additional Experiments

We present additional results for the KdV equation (see Section 5.2.1). First, we
demonstrate the operator learning when the input is sampled from a squared expo-
nential kernel. Second, we experiment on the learning behavior of the Neural opera-
tors when the train and test samples are generated from different random sampling
schemes.

5.2.7.1 Squared Exponential Kernel

We sample the input u0(x) from a squared exponential kernel, and solve the KdV
equation in a similar setting as mentioned in Section 5.2.1. Due to the periodic bound-
ary conditions, a periodic version of the squared exponential kernel (Rasmussen and
Williams, 2006) is used as follows:

k(x, x′) = exp
(
−2sin2(π(x− x′)/P )

L2

)
,

where, P is the domain length and L is the smoothing parameter of the kernel.
The random input function is sampled from N (0, Km) with Km being the kernel
matrix by taking P = 1 (domain length) and L = 0.5 to avoid the sharp peaks in
the sampled function. The results for the Neural operators (similar to Table 5.1) is
shown in Table 5.5. We see that MWT models perform better than the existing neural
operators at all resolutions.

5.2.7.2 Training/Evaluation with Different Sampling Rules

The experiments in the current work and also in all of the recent neural operators
work (Li et al., 2020a; Li et al., 2020c) have used the datasets such that the train
and test samples are generated by sampling the input function using the same rule.
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Networks λ = 0.25 λ = 0.5 λ = 0.75
s = 64

MWT Leg 0.00819 0.00413 0.00202
MWT Cheb 0.00751 0.00347 0.00210
FNO 0.0141 0.00822 0.00404
MGNO 0.3701 0.2030 0.0862
LNO 0.1012 0.0783 0.0141

s = 256
MWT Leg 0.00690 0.00322 0.00145
MWT Cheb 0.00616 0.00344 0.00182
FNO 0.0134 0.00901 0.00376
MGNO 0.4492 0.2114 0.1221
LNO 0.1306 0.0821 0.0161

s = 1024
MWT Leg 0.00641 0.00408 0.00127
MWT Cheb 0.00687 0.00333 0.00176
FNO 0.0141 0.00718 0.00359
MGNO 0.4774 0.2805 0.1309
LNO 0.1140 0.0752 0.0139

Table 5.6: Neural operators performance when training on random inputs sampled from Squared exponential kernel
and testing on samples generated from smooth random functions (Filip, Javeed, and Trefethen, 2019) with controllable
parameter λ. The random functions are used as the input u0(x) for Korteweg-de Vries (KdV) equation as mentioned
in Section 5.2.1. In the test data, λ is inversely proportional to sharpness of the fluctuations.

For example, in KdV, a complete dataset is first generated by randomly sampling the
inputs u0(x) from N (0, 74(∆+72I)−2.5) and then splitting the dataset into train/test.
This setting is useful when dealing with the systems such that the future evaluation
function samples have similar patterns like smoothness, periodicity, presence of peaks.
However, from the viewpoint of learning the operator between the function spaces, this
is not a general setting. We have seen in Figure 5.4 that upon varying the fluctuation
strength in the inputs (both train and test), the performance of the neural operators
differ. We now perform an addition experiment in which the neural operator is trained
using the samples from a periodic squared exponential kernel (Section 5.2.7.1) and
evaluated on the samples generated from random fields (Filip, Javeed, and Trefethen,
2019) with fluctuation parameter λ. We see in Table 5.6 that instead of different
generating rules, the properties like fluctuation strength matters more when it comes
to learning the operator map. Evaluation on samples that are generated from a
different rule can still work well provided that the fluctuations are of similar nature.
It is intuitive that by learning only from the low-frequency signals, the generalization
to higher-frequency signals is difficult.
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5.3 Conclusion

We address the problem of data-driven learning of the operator that maps between
two function spaces. Motivated from the fundamental properties of the integral ker-
nel, we found that multiwavelets constitute a natural basis to represent the kernel
sparsely. After generalizing the multiwavelets to work with arbitrary measures, we
proposed a series of models to learn the integral operator. This work opens up new
research directions and possibilities toward designing efficient Neural operators uti-
lizing properties of the kernels, and the suitable basis. We anticipate that the study
of this problem will solve many engineering and biological problems such as aircraft
wing design, complex fluids dynamics, metamaterials design, cyber-physical systems,
neuron-neuron interactions that are modeled by complex PDEs.
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Part III

Extensions and Applications
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Chapter 6

Approximate Submodularity and
Sensor Selection

The combinatorial nature of set optimization is usually dealt with by exploiting some
structures in the optimization function. The popular one is submodularity property.
The greedy selection in the presence of submodularity results in performance guar-
antees. However, greedy has also been proposed for non-submodular function, and it
results in good empirical performance. In this Section, specifically, we seek answers
to the following questions:

• Is it possible to approximate an arbitrary set function by a submodular one
within a given error everywhere (i.e., for all possible sets)?

• Can we quantify the error incurred by such approximation?

• Can we trade-off the approximation error with the sub-optimal guarantees as-
certain by greedy algorithms in submodular functions to determine which sub-
modular approximation function leads to tighter guarantees on the optimality
gap?

6.1 Preliminaries

A function f : 2N → R+ defined over the ground set Ω = {1, 2, . . . , N} is monotone
non-decreasing if for all S ⊆ T ⊆ Ω, f(S) ≤ f(T ). The marginal gain of an element
a ∈ Ω with respect to a set S ⊆ Ω is defined as fS(a) = f(S ∪ {a}) − f(S). A set
function f : 2Ω → R over a ground set Ω = {1, 2, . . . , N} is referred as submodular if
and only if for all sets S, T ⊆ Ω, f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) (Bach, 2013).
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Throughout this work, we focus on the cardinality constrained maximization problem,
i.e.,

max
|S|≤k, S⊆Ω

f(S). (6.1)

The objective function f in the above discrete optimization problem will possibly
be a non-submodular function. The optimal solution of this problem will be re-
ferred as OPT such that f(Ω∗) = OPT and |Ω∗| = k. Before stating the definition
of δ-approximate submodularity, we define the divergence between two discrete set
functions.

Definition 6.1. The divergence d between two non-decreasing set functions f : 2N →
R+ and g : 2N → R+ defined over the same set Ω is denoted as

d(f, g) = max
S⊆Ω, a∈Ω\S

∣∣∣∣∣fS(a)
gS(a) − 1

∣∣∣∣∣ . (6.2)

The definition of divergence can be used to introduce the notion of δ-approximate
submodular function as presented next.

Definition 6.2. A function f , possibly non-submodular, is referred as δ-approximate
submodular if there exists a non-decreasing submodular function g : 2N → R+ such
that d(f, g) ≤ δ.

In other words, Definition-6.2 can be re-written in its most useful form as

(1− δ) gS(a) ≤ fS(a) ≤ (1 + δ) gS(a), ∀S ⊆ Ω, a ∈ Ω \ S. (6.3)

Intuitively, any finite-valued set function can be looked as ∞−approximate submod-
ular function, but we will restrict to the scenario where δ ∈ [0, 1] in Definition 6.2.
Observe that f is exactly submodular if and only if δ = 0.

There are other measures to assess closeness to submodularity. For instance, for any
non-negative set function f , we can use the submodularity ratio (Das and Kempe,
2011) that can also be generalized as follows.

Definition 6.3 (generalized submodularity ratio (Bian et al., 2017)). The submodu-
larity ratio of a non-negative set function f is given by

γf = min
S,T ⊆Ω

∑
t∈T \S fS(t)
fS(T ) . (6.4)

It is worth noticing that 0 ≤ γf ≤ 1, and is equal to 1 if and only if f is submodular.
Another characterization is so-called curvature of submodular functions, which is a
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measure of deviation from modularity (Conforti and Cornuejols, 1984), and enables
us to write better performance bounds. The total curvature of a submodular function
is given by

αT = 1−min
a∈Ω

fΩ\a(a)
f(a) , (6.5)

with 0 ≤ αT ≤ 1 and is equal to 0 for modular/additive functions. This can be
further generalized for any non-negative set function as follows.

Definition 6.4 (Generalized curvature (Bian et al., 2017)). The curvature of a non-
negative set function f(.) can be written as

α = 1− min
S,T ⊆Ω,s∈S\T

fS\{s} ∪ T (s)
fS\{s}(s)

. (6.6)

Similarly, 0 ≤ α ≤ 1 for the case of non-decreasing functions, and α = αT when f is
submodular.

Now suppose that SG = {s1, s2, . . . , sk} denotes the ordered set solution of cardinality
constrained maximization problem obtained using the greedy algorithm, and Ω∗ be
the optimal solution such that |SG| = |Ω∗| = k. Then, we can define the greedy
curvature – in contrast to that in (Conforti and Cornuejols, 1984) – as follows.

Definition 6.5 (Greedy curvature). For a non-decreasing set function f , and Ω∗

such that |Ω∗| = k, the greedy curvature is defined as

αG = 1− min
1≤i≤k

 min
a∈SG\(Si−1

G ∪Ω∗)

fSi−1
G ∪Ω∗(a)
fSi−1

G
(a) , min

a∈(SG∩Ω∗)\Si−1
G

i≤j≤k

fSj−1
G

(sj)
fSi−1

G
(a)

 , (6.7)

where Si
G = {s1, s2, . . . , si} for 1 ≤ i ≤ k, S0

G = ϕ.

Remark that the greedy curvature defined above is always less than or equal to
the greedy curvature defined in (Conforti and Cornuejols, 1984). The second term
introduced in the above expression bounds the consecutive marginals of the greedy
selection. This kind of technique will play a key role in proving performance bounds
of the greedy algorithm and will simplify the proofs to a great extent. Furthermore, it
can be easily verified that αG ≤ α. The main results and interpretations are presented
in the following section.

Next, we start by addressing the necessary conditions that a set function must satisfy
to be δ-approximate submodular. First, notice that if the function is submodular,
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Figure 6.1: Region of submodularity ROS(f , 1) of a δ-approximate function f is depicted by the shadowed area in
(a), and ROS(f , δ2) in (b). The minimum possible value of δ is 1−γf

1+γf
, with γf denoting the submodularity ratio of f ,

and its maximum value is 1. A tuple (gi, αi, δi) represent the δi-approximation of f and αi its total curvature. For
δi < 1, the ROS(f , δi) in (b) may not include all the tuples as we see in (a).

then δ can be set to zero, and vice versa. On the other hand, if δ is different from
zero, then we show that it cannot be arbitrary close. In other words, we obtain a
necessary condition that establishes a ‘submodularity gap’. Subsequently, we aim to
dig in further detail the properties of these functions, which lead us to introduce the
notion of the region of submodularity (ROS). Within this region, there may exist
different submodular functions, whose curvature differs and directly impact the opti-
mality guarantees. Specifically, the lower the curvature is, the better the performance.
Therefore, we aim to leverage these properties and the notion of generalized greedy
curvature to show the performance of the greedy algorithm and obtain the improved
constant optimality guarantees.

6.1.1 Approximate Submodularity

Lemma 6.1. A non-submodular function f with submodularity ratio γf has a δ-
approximation submodular function g only if δ ≥ 1−γf

1+γf
.

Proof. We will prove this by contradiction, let us assume that g is a submodular
function and δ-approximation of f with δ <

1−γf

1+γf
(or, equivalently, 1+δ

1−δ
< 1

γf
). The

submodularity ratio of any g satisfying (6.3) can be written as

γg = min
S,T ⊆Ω

∑
t∈T \S gS(t)
gS(T ) ≤ 1 + δ

1− δ min
S,T ⊆Ω

∑
t∈T \S fS(t)
fS(T ) <

1
γf

γf = 1,

where the first inequality is obtained using (6.3). Hence, g cannot be submodular.
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The above result gives an interesting insight into what do we mean by closeness of a
function to being submodular using the submodularity ratio. The value of γf limits
the smallest possible value of δ and determines how close can be the function marginals
to that of some submodular function. These insights can be better captured by the
notion of region of submodularity, defined as

ROS(f, δ) =
{
g | 1− γf

1 + γf

≤ d(f, g) ≤ δ

}
, (6.8)

which is the collection of delta-approximations of a given function f . As shown in
Figure 6.1, for a given f , the submodular functions in the shaded region can be used
to describe it as δ-approximation, but the closest value of δ is restricted by γf . It
should be noted that multiple gi can be used as δ-approximation of a given f ; hence,
from the viewpoint of performance bound, we are interested in the g with minimum
total curvature for the given value of δ. Let us denote αδ as the curvature of the
selected δ-approximation g, i.e.,

αδ = min
g∈ROS(f,δ)

αT (g). (6.9)

With this in mind, in the next section, we state one of the main result regarding
performance of naive greedy selection for δ-approximate submodular functions.

6.1.2 Constant Performance Bound

It is worth to mention the result for the performance bound of a submodular function
with total curvature α.
Theorem 6.1 (from (Conforti and Cornuejols, 1984)). For a non-negative non-
decreasing submodular function g with total curvature α, if OPT denotes the optimal
value of max g(S) subject to |S| ≤ k, then the output of greedy algorithm, SG satisfies
g(SG) ≥ 1

α
(1− (1− α

k
)k)OPT .

Also, for any set function (may or may not be δ-approximate), the performance of
greedy can be lower bounded as explained in the next result.
Theorem 6.2 (from (Bian et al., 2017)). Let f be a non-negative non-decreasing set
function with submodularity ratio γ ∈ [0, 1] and curvature α ∈ [0, 1]. The output of
greedy algorithm satisfies f(SG) ≥ 1

α
(1− (1− αγ

k
)k)OPT .

For δ-approximate submodular functions it can be shown that the greedy selection
algorithm, described in Algorithm 5, offers constant performance bound as captured
in the next result.
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Algorithm 5: Greedy Selection Algorithm
Output: SG

Initialize SG = ϕ;
repeat

s∗ = arg max
s∈Ω\SG

fSG
(s);

SG ← SG ∪ s∗;
until |SG| = k;

Approximation Feasibility Performance bound
(1− δ)gS(a) ≤ fS(a) ≤ (1 + δ)gS(a) δ ≥ 1−γf

1+γf

1
αδ

1−δ
1+δ

+ 2δ
1+δ

(
1− exp{−(αδ

1−δ
1+δ

+ 2δ
1+δ

)1−δ
1+δ
}
)

δlgS(a) ≤ fS(a) ≤ δugS(a) δl ≤ δuγf
1

1− δl
δu

(1−αδ)

(
1− exp{−(1− δl

δu
(1− αδ)) δl

δu
}
)

gS(a) ≤ fS(a) ≤ δugS(a) δu ≥ 1
γf

1
1− 1−αδ

δu

(
1− exp{−(1− 1−αδ

δu
) 1

δu
}
)

Table 6.1: Feasibility and performance bound for different approximation structures.

Theorem 6.3. For a given δ-approximate submodular function with submodularity
ratio γf and αδ such that δ ≥ 1−γf

1+γf
, the greedy algorithm has guaranteed constant

performance.

f(SG) ≥ 1
αδ

1−δ
1+δ

+ 2δ
1+δ

1−
(

1− 1
k

(
αδ

1− δ
1 + δ

+ 2δ
1 + δ

)(
1− δ
1 + δ

))k
OPT. (6.10)

The detailed proof is provided in the Appendix. It is worth noticing that for δ = 0,
the above result is the same as Theorem 6.1 because f would be submodular. For
δ ≥ 1−γf

1+γf
, the performance guarantee decreases due to the divergence from submod-

ularity property. While αδ corresponds to the total curvature of a δ-approximation
submodular function of the given function f , the term 2δ

1+δ
can be looked upon as

penalty paid for deviating from this submodular function.

6.1.3 Extensions on Approximation and Performance Bounds

The definition of approximate submodularity in (6.3) is sufficient for identifying such
functions but it often happens that the upper and lower bounds may not be symmetric
as we will see in the next section. However, instead of making the bounds loose to
bring regularity, such asymmetric behavior can be leveraged to get tighter bounds for
the performance of greedy algorithm from Theorem 6.3. Specifically,
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(i) If the δ-approximation in equation (6.3) is available in the following form

δl gS(a) ≤ fS(a) ≤ δu gS(a), ∀S ⊆ Ω, a ∈ Ω \ S. (6.11)

Then we have the following results on feasibility and performance bounds.

Corollary 6.1. A non-submodular function f with submodularity ratio γf has a δ-
approximation submodular function g, according to (6.11), only if δl ≤ δuγf .

Corollary 6.2. For a given δ-approximate submodular function, according to (6.11),
with submodularity ratio γf and αδ such that δl ≤ δuγf , the greedy algorithm has
guaranteed constant performance.

f(SG) ≥ 1
1− δl

δu
(1− αδ)

1−
(

1− 1
k

(
1− δl

δu

(1− αδ)
)(

δl

δu

))k
OPT. (6.12)

(ii) If the δ-approximation in equation (6.3) is available in the following form

gS(a) ≤ fS(a) ≤ δu gS(a), ∀S ⊆ Ω, a ∈ Ω \ S. (6.13)

Then, we have the following results on feasibility and performance bounds.

Corollary 6.3. A non-submodular function f with submodularity ratio γf has a δ-
approximation submodular function g, according to (6.13), only if δu ≥ 1

γf
.

Corollary 6.4. For a given δ-approximate submodular function, according to (6.13),
with submodularity ratio γf and αδ such that δu ≥ 1

γf
, the greedy algorithm has guar-

anteed constant performance.

f(SG) ≥ 1
1− 1−αδ

δu

(
1−

(
1− 1

k

(
1− 1− αδ

δu

)( 1
δu

))k
)
OPT. (6.14)

The variations of such asymmetric behavior is summarized in Table 6.1. Next, we
identify some important examples that can be recognized as approximate submodular
functions.

6.2 Applications

In this section, we identify some objective functions which are not submodular and
often appear in the applications (e.g., sensor selection in cyber-physical systems and
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sparse learning). Next, we provide the foundation why greedy algorithm has empiri-
cally performed well in such non-submodular functions. Towards this goal, we exploit
the δ-approximations of these functions, that help us to derive improved performance
bounds, as well as develop some closeness guarantee to being submodular.

6.2.1 Trace of Inverse Gramian

Let us consider a Gramian matrix WS ∈ Rn×n, obtained as WS = Λ0 + ∑
s∈S xsx

T
s ,

where Λ0 is a symmetric matrix and xi ∈ Rn is taken from the data matrix X ∈
Rn×N , X = [x1, x2, . . . , xN ]. As such, let the ordered eigenvalues of WS be denoted as
λn ≥ . . . ≥ λ1.

There are several practical settings where the Gramian is used . For instance, the
negative trace of the covariance matrix inverse is used as criteria for Bayesian-A opti-
mality (Krause, Singh, and Guestrin, 2008). Another example consists in determining
the minimum sensor selection (constrained to a given sensor budget) that seeks to re-
duce the variance of the Bayesian estimate of parameters (Bian et al., 2017). Briefly,
for the sake of completeness, this problem can be described as follows. Consider some
set of observations y ∈ RN and the linear model y = XT θ + w which relates the
parameter θ with observations in the presence of Gaussian noise w ∼ N (0, IN). The
problem of sensor selection can be stated as minimizing the conditional variance of θ
with a given sensor budget. If S ⊆ {1, 2, . . . , N} denotes the set of selected sensors,
then we have yS = XT

S θ + w, where yS are the set of observations indexed according
to the elements in S and similarly XS has columns taken from X. With the Gaussian
prior assumption for θ ∼ N (0,Λ−1

0 ) with Λ0 = β2IN , the conditional covariance of
θ given yS can be written as Σθ|yS

= (Λ0 + XSX
T
S )−1. Consequently, the objective

function is defined as

f(S) = tr(Λ0)− tr(Λ0 +
∑

s∈S
xsx

T
s )−1. (6.15)

Notice that the negative trace of the inverse of the Gramian matrix, WS, is a non-
submodular function (Krause, Singh, and Guestrin, 2008). Notwithstanding, it can
be labeled as δ-approximate to a known submodular function, log determinant of WS,
which is formalized in the next result.

Proposition 7. The negative trace of matrix inverse, f(S) = −tr(W−1
S ) is a δ-

approximate, where the δ-approximation is given by the submodular function, g(S) =
log det(WS) with the upper and lower bounds given by δu = 1

λ1(Wϕ) and δl = 1
λn(WΩ) ,

respectively.

To assess the tightness of the associated performance bounds (summarized in the
Table 6.1), we conduct different numerical experiments in the Experimental Section.
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6.2.2 Minimum Eigenvalue

It has been stated in (Pasqualetti, Zampieri, and Bullo, 2014) that minimum eigen-
value of the so-called observability Gramian can be used to retrieve the networked
dynamical system’s state. In particular, the lower the value, the harder it is to re-
trieve the state; hence, we seek to maximize the value of minimum eigenvalue of
the observability Gramian. The maximization of minimum eigenvalue also serves as
criteria for matrix inversion in the presence of numerical errors for sparse matrices.

Next, the minimum eigenvalue of the Gramian given by

f(S) = λ1(WS) (6.16)

is a non-submodular function (Summers, Cortesi, and Lygeros, 2016), but in the
context of our framework, it can be shown as a δ-approximate submodular function,
as described next.

Proposition 8. The minimum eigenvalue of Gramian, f(S) = λ1(WS) is a δ-
approximate, where the δ-approximation is given by the submodular function, g1(S) =
λn(WS), with the upper and lower bounds as δu = max

ω∈Ω
λn(Wω)
λ1(Wω) and δl = min

ω∈Ω
λ1(Wω)
λn(Wω) ,

respectively.

Next, we show that there exists another function in the ROS of f through the following
result.

Proposition 9. The minimum eigenvalue of Gramian, f(S) = λ1(WS) is a δ-
approximate, where the δ-approximation is given by the submodular function, g2(S) =
tr(WS), with the upper and lower bounds as δu and δl, respectively, where

δu = 1− n− 1
n

min
ω∈Ω

λ1(Wω)
λn(Wω) , and δl = 1

n
min
ω∈Ω

λ1(Wω)
λn(Wω) .

The above result represents the non-submodular function f as an approximation to
a modular function. Since g2 is modular, therefore its curvature is equal to 0. This
property can be leveraged in Table 6.1 to get tight bounds when n is not large.

6.2.3 Tightness Analysis of the Performance Bounds

The performance bound presented in (Bian et al., 2017) requires a combinatorial
exhaustive search for the computation of parameters, making it extremely difficult to
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Figure 6.2: Comparison of performance bound for non-submodular function f(S) = −tr(W −1
S ) using δ-approximate

method and using bound of parameters (α, γ) from (Bian et al., 2017).

obtain in practical scenarios. To remedy this, the authors have presented approximate
bounds given in terms of the parameters, curvature and submodularity ratio. The
performance bound for greedy algorithm presented in this work (in Theorem 6.3)
requires only linear search to compute the curvature of the submodular function, αδ

from (6.5).

We make a comparison between our presented bounds and the ones in (Bian et al.,
2017) through simulation of negative trace of WS inverse described in (6.15). To
simulate the matrix WS, the entries of the data matrix X ∈ R10×30 are generated from
Gaussian distribution N (0, 1) and each column is normalized (i.e., ||xi||2 = 1). The
matrix Λ0 in WS is taken as β2I. Figure 6.2 shows the performance bound attained
for different values of β. We observe that there is a considerable gap between the
performance bounds using δu and δl from Proposition 7 and Corollary 6.2, and the
ones computed as proposed in (Bian et al., 2017).

Remarkably, an interesting observation can be made when β grows large, which can
be explained using the current theory of δ-approximation. Specifically, the ratio
of bounds δu/δl → 1, the identified submodular function (i.e., log determinant of
Gramian) becomes constant, and consequently, αδ → 1. Substituting these values in
Table 6.1, it follows that the performance bound goes to 1− 1/e which matches that
of a submodular function.
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Chapter 7

Non-Markovian Reinforcement
Learning

Reinforcement learning (RL) (Bertsekas, 2019) is a technique to synthesize control
policies for autonomous agents that interact with a stochastic environment. The
RL paradigm now contains a number of different kinds of algorithms, and has been
successfully used across a diverse set of applications including autonomous vehicles,
resource management in computer clusters (Mao et al., 2016), traffic light control
(Arel et al., 2010), web system configuration (Bu, Rao, and Xu, 2009), and person-
alized recommendations (Zheng et al., 2018). In RL, we assume that in each state,
the agent performs some action and the environment picks a probability distribution
over the next state and assigns a reward (or negative cost). The reward is typically
defined by the user with the help of a state-based (or state-action-based) reward func-
tion. The expected payoff that the agent may receive in any state can be defined in a
number of different ways; in this chapter, we assume that the payoff is an discounted
sum of the local rewards (with some discount factor γ ∈ [0, 1]) over some time hori-
zon H. The purpose of RL is to find the stochastic policy (i.e. a distribution over
actions conditioned on the current state), that optimizes the expected payoff for the
agent. Most RL algorithms assume that the environment satisfies Markov assump-
tions, i.e. the probability distribution over the next state is dependent only on the
current state (and not the history). In contrast, here, we investigate an RL procedure
for a non-Markovian environment.

Broadly speaking, there are two classes of RL algorithms (Chua et al., 2018): model-based
and model-free algorithms. Most classical RL algorithms are model-based; they as-
sume that the environment is explicitly specified as a Markov Decision Process (MDP),
and use dynamic programming to compute the expected payoff for each state of the
MDP (called its value), as well as the optimal policy (Sutton, Precup, and Singh,
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Figure 7.1: Non-Markovian Model Based Reinforcement Learning setup. The model based predictions are used to
select actions, and then iteratively update the model dynamics.

1999; Strehl, Li, and Littman, 2009). Classical RL algorithms have strong conver-
gence guarantees stemming from the fact that the value of a state can be recursively
expressed in terms of the value of the next state (called the Bellman equation), which
allows us to define an operator to update the value (or the policy) for a given state
across iterations. This operator (also known as the Bellman operator) can be shown
to be a contraction mapping (Bertsekas, 2019). However, obtaining exact symbolic
descriptions of models is often infeasible. This led to the development of model-
free reinforcement learning (MFRL) approaches that rely on sampling many model
behaviors through simulations and eschew building a model altogether.

MFRL algorithms can converge to an optimal policy under the right set of assump-
tions; however, can suffer from high sample complexity (i.e. the number of simulations
required to learn an optimal policy). This has led to investigation of a new class of
model-based RL (MBRL) algorithms where the purpose is to simultaneously learn
the system model as well as the optimal policy (Mao et al., 2016). Such algorithms
are called on policy, as the policy learned during any iteration is used for improving
the learned model as well as optimizing the policy further. Most MBRL approaches
use function approximators or Bayesian models to efficiently learn from scarce sample
sets of system trajectories. MBRL approaches tend to have lower sample complexity
than MFRL as the learned model can accelerate the convergence by focusing on ac-
tions that are likely to be close to the optimal action. However, MBRL approaches
can suffer severely from modeling errors (Todorov, Erez, and Tassa, 2012), and may
converge to less optimal solutions.

In both MFRL and MBRL algorithms, a fundamental assumption is that the en-
vironment satisfies Markovian properties, partly to avoid the complexity of dealing
with the historical dependence in transitions. To overcome this challenge, we pro-
pose a non-Markovian MBRL framework that captures non-Markovian characteristics

86



through a fractional dynamical systems formulation. Fractional dynamical systems
can model non-Markovian processes characterized by a single fractal exponent and
commonly arise in mathematical models of human physiological processes (West,
2010; Xue et al., 2016), biological systems, condensed matter and material sciences,
and population dynamics (Gupta, Pequito, and Bogdan, 2018b; Yin, Gupta, and Bog-
dan, 2020; Gupta, Pequito, and Bogdan, 2018c; Gupta, Pequito, and Bogdan, 2018d).
Such systems can effectively model spatio-temporal properties of physiological signals
such as blood oxygenation level dependent (BOLD), electromyogram (EMG), and
electrocardiogram (ECG). (Gupta, Pequito, and Bogdan, 2018b; Baleanu, Machado,
and Luo, 2011; Magin, 2006).

The advantage of using fractional dynamical models is that they can accurately rep-
resent long-range (historical) correlations (memory) through a minimum number of
parameters (e.g., using a single fractal exponent to encode a long-range historical
dependence rather than memorizing the trajectory itself or modeling it through a
large set of autoregressive parameters). Though fractional models can be used to
perform predictive control (Ghorbani and Bogdan, 2014), problems such as learning
these models effectively or obtaining optimal policies for such models in an RL setting
have not been explored.

In this chapter, we present a novel non-Markovian MBRL technique in which our
algorithm alternates between incrementally learning the fractional exponent from data
and learning the optimal policy on the updated model. We show that the optimal
action in a given state can be efficiently computed by solving a quadratic program
over a bounded horizon rollout from the state. The overview of our model-based
reinforcement learning algorithm is shown in Fig. 7.1. In this algorithm, we use on-
policy simulations to gather additional RL data that is then used to update the model.
Our model learning algorithm is based on minimizing the distance between the data’s
state-action distribution and the next state distribution induced by the controller.
The fractional dynamic model is then retrained using the cumulative dataset. The
MBRL procedure is run for a finite number of user-specified iterations.

7.1 Problem Formulation

The reinforcement learning deals with the design of the controller (or policy) which
minimizes the expected total cost. In the setting of a memoryless assumption, the
Markov Decision Process (MDP) (Bellman, 1957) is used to model the system dy-
namics such that the future state depends only on the current state and action. For
a state st ∈ Rn and action at ∈ Rp, the future state evolve as st+1 ∼ P (st+1|st, at),
and a cost function rt = c(st, at). However, the Markov assumption does not work
well with the long-range memory processes (Micciche, 2009). In this work, we take
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the non-Markovian setting, or history dependent process (HDP), and hence, the fu-
ture state depends not only on the current action but also the history of states. The
history at time t is the set Ht = {(sk)k≤t}, and for a trajectory h ∈ Ht, we have
P (st+1|h, at), or alternatively, Ph(st+1|st, at), where the terminal state of the trajec-
tory h is written as h(t) = st. We consider a model-based approach for reinforcement
learning in a finite-horizon setting. A non-Markovian policy π(.|h) provides a distri-
bution over actions given the history of states until time t as h ∈ Ht. For a given
policy, the value function is defined as V π

h = Eπ(.|h)
∑T −1

t=0 c(st, at), where the expecta-
tion is taken over state trajectories using policy π and the HDP, and T is the horizon
under consideration. We formally define the non-Markovian MBRL problem in the
Section 7.1.2.

7.1.1 Fractional Dynamical Model

We revisit the fractional dynamical model as discussed in Section 2.1. A linear discrete
time fractional-order dynamical model is described as follows:

∆αs[k + 1] = As[k] + Ba[k], (7.1)

where s ∈ Rn is the state, a ∈ Rp is the input action. The difference between a
classic linear time-invariant (or Markovian) and the above model is the inclusion
of fractional-order derivative whose expansion and discretization for any ith state
(1 ≤ i ≤ n) can be written as

∆αisi[k] =
k∑

j=0
ψ(αi, j)si[k − j], (7.2)

where αi is the fractional order corresponding to the ith state dimension and ψ(αi, j) =
Γ(j−αi)

Γ(−αi)Γ(j+1) with Γ(.) denoting the gamma function. The system dynamics can also
be written in the probabilistic manner as follows:

Pθ(s[k + 1]|s[0], . . . , s[k], a[k]) = N (µθ,Σ),

µθ =


∑k

j=1 ψ(αi, j)s0[k − j] + aT
0 s[k] + bT

0 a[k] + µ0∑k
j=1 ψ(αi, j)s1[k − j] + aT

1 s[k] + bT
1 a[k] + µ1

...∑k
j=1 ψ(αi, j)sn−1[k − j] + aT

n−1s[k] + bT
n−1a[k] + µn−1

 , (7.3)

where θ = {α,A,B, µ,Σ}, and A = [a0, . . . , an−1], B = [b0, . . . ,bn−1]. The frac-
tional differencing operator in (7.3) introduce the non-Markovianity by having long-range
filtering operation on the state vectors.
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7.1.2 Non-Markovian Model Based Reinforcement Learning

The actions in MBRL are preferred on the basis of predictions made by the undertaken
model of the system dynamics. For many real-world systems, example blood glucose
(Ghorbani and Bogdan, 2014; Otoom et al., 2013), ECG activities (Xue et al., 2016),
the assumption of Markovian dynamics does not hold and the predictions are not
accurate, leading to less rewarding actions selected for the system. As we note in the
previous section 7.1.1 that non-Markovian dynamics can be effectively and compactly
modeled as fractional dynamical system, we aim to use this system model for making
predictions. The non-Markovian MBRL problem is formally defined as follows.

Problem Statement: Given non-Markovian state transitions, and actions dataset
in the time horizon k ∈ [0, T −1] as D =

{
(s[0], . . . , s[k], a[k]), s[k+1]

}
. Let Pθ(s[k+

1]|s[0], . . . , s[k], a[k]) be the non-Markovian system dynamics parameterized by the
model parameters θ. Estimate the optimal policy which minimizes the expected
future discounted cost

π∗ = arg min
π

E
T −1∑
k=0

γkc(s[k], a[k]), (7.4)

where γ is the discount factor satisfying γ ∈ [0, 1], and T is the horizon under con-
sideration.

7.2 Non-Markovian Reinforcement Learning

The MBRL comprises of two key steps, namely (i) the estimation of the model dy-
namics from the given data D, and (ii) the design of a policy for optimal action
selection which minimizes the total expected cost using estimated dynamics. We
discuss the solution to the non-Markovian MBRL as follows.

7.2.1 Non-Markovian Model Predictive Control

The Model Predictive Control (MPC) aims at estimating the closed-loop policy by
optimizing the future discounted cost under a limited-horizon H using some approx-
imation of the environment dynamics and the cost. In this work, we are concerned
with HDP using non-Markovian state dynamics. In MPC, the policy could be a de-
terministic action, or a distribution over actions, and we sample the action at each
time-step in the latter. The MPC problem to estimate the policy at time-step k for
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a given h ∈ Hk can be formally defined as

min
π(.|h)

∑k+H−1
l=k

γl−kĉ(s[l], a[l])

subject to
s[l + 1] = f(h, a[l], e[l]),∀l ≥ k

(7.5)

The approximation of the environment dynamics f could be non-linear in general,
and e[l] is the system perturbation noise following some distribution e ∼ ge. The
presence of e provides randomness in the action sampling through policy, and the
sampled action at each step is a[k]. The performance of the non-Markovian MPC
based policy is bounded within the optimal policy using the following result.

Theorem 7.1. Given an approximate HDP with ||P̂h′(s′|s, a)−Ph(s′|s, a)||1 ≤ O(tq),
∀h, h′ ∈ Ht with h(t) = h′(t) = s, and ||c(s, a) − ĉ(s, a)||∞ ≤ ε. The performance of
the non-Markovian MPC based policy π̂ is related to the optimal policy π∗ as

||V π̂
h0 − V

π∗

h0 ||∞ ≤ 21− γH

1− γ

(
cmax − cmin

2

)
HO(T q) + 2ε1− γH

1− γ
1− γT

1− γ , (7.6)

where, h0 ∈ H0 is the initial history given to the system.

The assumption of model approximation is critical here, and the error increases if the
exponent q increases. For the MDP setting, the approximation is taken as q = 0.
However, for a HDP with the history of length t, we scale the approximation gap
with t. The MPC horizon also plays a role in the error bound, and the error increases
for larger H.

The non-Markovian MPC could be computationally prohibitive (expensive) in the
general setting. Consequently, we now discuss the fractional dynamical MPC ap-
proach which is non-Markovian but computationally tractable.

7.2.2 Fractional Model Predictive Control

The linear discrete fractional dynamical model as discussed in (7.1) is used as an ap-
proximation to the non-Markovian environment dynamics. Formally, for our purpose,
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the fractional MPC problem using (7.5) is defined as

min
a[k]

∑k+H−1
l=k

γl−kĉ(s[l], a[l])

s.t.
∆αs̄[l + 1] = As̄[l] + Ba[l] + e[l],

s̄[k′] = s[k],∀k′ ≤ k,

smin ≤ s̄[l] ≤ smax,∀l,

(7.7)

where smin, smax are feasibility bounds on the problem according to the application,
and the model noise e ∼ N (0,Σ). Note that (7.7) provides a policy using fractional
MPC. The action a[k] is sampled from this policy by first sampling e ∼ N (0,Σ),
and then solving (7.7). The non-Markovian fractional dynamics would introduce the
computation complexities in optimally solving the problem in (7.7). However, since
the constraints in (7.7) are linear, for cost approximations ĉ that are quadratic, a
quadratic programming (QP) solution can be developed to solve the fractional MPC
efficiently. We refer the reader to Appendix F.2 for the QP version of the fractional
MPC. Further, a convex formulation of the costs ĉ also enables efficient solution of the
fractional MPC using convex programming solvers, for example, CPLEX and Gurobi
(Kronqvist et al., 2019; Hutter, Hoos, and Leyton-Brown, 2010).

Next, we discuss the methodologies required to make an approximation of the non-
Markovian environment using fractional dynamics.

7.2.3 Model Estimation

The fractional dynamical model as described in the Section 7.1.1 is estimated using the
approach proposed in (Gupta, Pequito, and Bogdan, 2018b) by replacing the unknown
inputs with known actions at any time-step. For the sake of completeness, we present
estimation algorithm as Algorithm 6. We note that in (Gupta, Pequito, and Bogdan,
2018b) the input data is obtained only once, and hence in this work appropriate
modification in Algorithm 6 is performed to work with recursively updated dataset as
we see in Section 7.2.4.

The Markovian model assume memoryless property and hence lacks long-range cor-
relations for further accurate modeling. The existence of long-range correlations can
be estimated by computing the Hurst exponent H̄. For long-range correlations, the
H̄ lies in the range of (0.5, 1]. The fractional coefficient α in our model is related
with H̄ as α = H̄ − 0.5. The Hurst exponent can be estimated from the slope of log-
log variations of the variance of wavelets coefficients vs scale as noted in (Flandrin,
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Algorithm 6: Fractional Dynamics Estimation
Input: D =

{
(s[0], . . . , s[k], a[k]), s[k + 1]

}
in the time-horizon k ∈ [0, T − 1]

Output: θ = {α,A,B, µ,Σ}
1: Estimate α using wavelets fitting for each state dimension
2: for i = 1, 2, . . . , n do
3: Compute zi[k] = ∆αis[k + 1] using αi ▷ Eq.(7.2)
4: Aggregate zi[k], s[k], a[k] as Zi, S, U
5: [aT

i , b
T
i , µ] = arg min

a,b,µ
||Zi − Sa− Ub− µ||22 with Σ as squared error

6: end for

1992). In the experiments Section 7.3.2, we show log-log plot to observe the presence
of long-range correlations in the real-world data.

7.2.4 Model-based Reinforcement Learning

The non-Markovian MPC exploiting the fractional dynamical model formulation in
Section 7.2.2 utilizes a dataset of the form D =

{
(s[0], . . . , s[k], a[k]), s[k + 1]

}
in

the time-horizon k ∈ [0, T − 1]. We note that the performance of such MPC can
be further improved by using reinforcement learning. The selected actions by the
MPC a[k] can be used to gather new transitions s[k + 1]|s[0], . . . , s[k], a[k], or ac-
quiring data using on-policy. The aggregated data is now used to re-estimate the
model dynamics, and then perform MPC. Specifically, the MBRL proceeds as fol-
lows. Using the seed dataset, a parameterized fractional model dynamics is estimated
as Pθ(s[k + 1]|s[0], . . . , s[k], a[k]). The model dynamics is used to minimize the dis-
counted future cost as MPC in equation (7.7). The selected action along with the
history of states s[0], . . . , s[k] is used to gather the next transition using on-policy as
s[k + 1]|s[0], . . . , s[k], a[k]. The seed dataset is updated with the gathered on-policy
data DRL to get aggregated dataset. The fractional dynamics are updated using
the new dataset, and the aforementioned steps are repeated for a given number of
iterations. The above steps are summarized as Algorithm 7. The Algorithm 7 uti-
lizes Algorithm 6 iteratively for the fractional model estimation. We now proceed to
Section 7.3 for numerical demonstration of the proposed schemes.

7.3 Experiments

We show example of the fractional MBRL on the blood glucose (BG) control. The
motive of blood glucose control is to make the BG in the range of 70−180mg/dL. The
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Algorithm 7: Fractional Reinforcement Learning
Input: Seed dataset Ds =

{
(s[0], . . . , s[k], a[k]), s[k + 1]

}
in the time-horizon

k ∈ [0, T − 1]
Output: θ
Initialize: DRL ← ϕ

1: for iter = 1, 2, . . . , iter max do
2: θ ← Fractional Dynamics Estimation(Ds ∪ DRL)
3: Set initial state s̄[0]← s[0]
4: for k = 0, 1, . . . , T − 1 do
5: Sample action a[k] from the fractional MPC based policy using s̄[l],∀l ≤ k

▷ Eq.(7.7)
6: Get s̄[k + 1] by executing a[k]
7: DRL ← DRL ∪

{
(s̄[0], . . . , s̄[k], a[k]), s̄[k + 1]

}
8: end for
9: end for

BG control is crucial in the treatment of T1 diabetes patients which have inability to
produce the required insulin amounts. The low levels of glucose in the blood plasma
is termed as hypoglycemia, while the high levels is termed as hyperglycemia. For the
application of reinforcement learning, the cost function is taken as risk associated with
different levels of BG in the system. In (Clarke and Kovatchev, 2009) a quantified
version of risk is proposed as function of BG levels which is written as follows.

f(b) = 1.509× (log(b)1.084 − 5.381),
R(b) = 10× (f(b))2. (7.8)

Next, the cost for the transition instance s[k + 1]|s[0], . . . , s[k], a[k]) is written as

ĉ(s[k], a[k]) = R(s[k + 1])−R(s[k]), (7.9)

where the state s[k] ∈ R represents the BG level at time instant k, and a[k] represents
the insulin dose and R(.) is from (7.8). In rest of the section, we experiment with
simulated and real-world dataset, respectively.

7.3.1 UVa T1DM Simulator

The UVa/Padova T1DM (Kovatchev et al., 2009) is a FDA approved T1 Diabetes
simulator which supports multiple virtual subjects. An open-source implementation
of the simulator (Xie, 2018) is used in this work. We take similar simulation setup as
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in (Wang et al., 2015). Each subject is simulated for a total of 36 hours starting from
6 a.m. in the morning. The meal timings/quantity are fixed as 50g CHO at 9 a.m.,
70g at 1 p.m, 90g at 5:30 p.m, and 25g at 8 p.m. On day 2, 50g at 9 a.m., and 70g
at 1 p.m. The continuous glucose monitor (CGM) sensor measures the BG at every
5 mins.

For applying Algorithm 7, we set the horizon length H in MPC be 100 samples,
discount factor γ = 0.99. The smin, smax in MPC problem (7.7) are set as 70, 180
respectively. The maximum number of RL iterations iter max are set as 30. We
show the BG output of the simulator using Algorithm 7 as controller in Fig. 7.2. We
observe that the fraction of time BG stays in the desired zone 70−180mg/dL increase
with increasing the learning iterations in the Algorithm 7. The data gathered using
on-policy helps the model making better prediction, and with as few iterations as 15
we have more than 90% of time BG stays in the desired levels.

7.3.2 Real-World Data

Testing the controllers on real-world systems is difficult because of the health risks
associated with the patients. We take the Diabetes dataset from UCI repository
(Dua and Graff, 2017) which records the BG level and insulin dosage for 70 patients.
While testing controller is not possible here, hence we present the analysis regarding
the modeling part. The long-range memory in the signals exist if the associated
fractional exponent lies in the range of (0, 0.5] as noted in Section 7.2.3. In Fig. 7.3,
we show the log-log plots of the variance of wavelets coefficients at various scales, for
two subjects. We observe that the estimated value of α lies in (0, 0.5] which indicates
presence of long-range memory, and hence fractional models can be used to make
better predictions.

7.3.3 Discussion

Insulin dependent diabetes mellitus (IDDM) is a kind of chronic disease characterized
by abnormal BG level. Topically, high level of BG, which is caused by either the
pancreas does not compound enough insulin (a hormone that signals cells to uptake
glucose in the bloodstream) or the produced insulin cannot be effectively used by the
human body, can result in a disorder of metabolic that give rise to irreversible damage
(such as lesion of patients’ organs, retinopathy, nephropathy, peripheral neuropathy
and blindness) (Tejedor, Woldaregay, and Godtliebsen, 2020; Derouich and Boutayeb,
2002). According to recent research, nowadays, IDDM is influencing 20-40 million
people around the world and this amount is increasing over time (You and Henneberg,
2016). Related work (Diabetes Control and Complications Trial Research Group and
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Figure 7.3: The log-log plot of variance of wavelet coefficients vs scale of two subjects in (a) and (b). The values of
α lies in (0, 0.5] which indicates long-range correlations.

others, 1995) presents that tight blood glucose control along with insulin injections
can help to control the disease, however intensive control can result in the risk of low
blood sugar. This symptom can increase the risk of heart disease, or even sudden
death.

To effectively and safely against with IDDM, in the work of (Coffen and Dahlquist,
2009), the authors constructed a CGM to detect the insulin among in the individuals
in real time. This monitor can read the blood glucose of the patients for every 5 mins.
Combining with an insulin pump (a small device that automatically inject insulin), the
CGM can constructed a system called “artificial pancreas” (AP). The AP system is
designed to control the symptom of patients which can dynamically predict the among
of insulin the individual should be delivered. For many years, researchers have worked
on designing efficient algorithms/models to correctly predict the required insulin of
individuals in AP systems. In this chapter, we present an innovative MBRL algorithm
which is explored in the non-Markovian model to dynamically make the prediction of
the among of insulin patients demand with high-accuracy and high-efficiency.

7.4 Conclusion

There are many important learning control problems that are not naturally formu-
lated as Markov decision processes. For example, if the agent cannot directly observe
the environment state, then the use of a partially observable Markov decision process
(POMDP) (Smallwood and Sondik, 1973) model is more appropriate. Even in pres-
ence of full observability, the probability distribution over next states may not depend
only on the current state. A more general class can be termed as history dependent
process (HDP), which can be looked as infinite-state POMDP (Leike, 2016). Another
non-MDP class for model-free is Q-value uniform decision process (QDP) (Majeed
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and Hutter, 2018). The non-Markovianity in the rewards structure is explored in
(Gaon and Brafman, 2019; Agarwal and Aggarwal, 2021) which utilize model-free
learning, and RL for POMDP is explored in (Perez and Silander, 2017) which is also
model-free. MBRL is used for various robotics application (Nagabandi et al., 2018)
in the MDP setting. The deep probabilistic networks using MDP is used in (Chua
et al., 2018).

In this work, we constructed a non-Markovian Model Based Reinforcement Learning
(MBRL) algorithm consisted with fractional dynamics model and the model predic-
tive control. The current Reinforcement learning (RL) approaches have two kinds of
limitations: (i) model-free RL models can achieve a high predict accuracy, but these
approaches need a large number of data-points to train the model; (ii) current models
don’t make latent behavioral patterns into considerations which can affect the predic-
tion accuracy in MBRL. We show that our non-Markovian MBRL model can validly
avoid these limitations. Firstly, in our algorithm, we gather additional on-policy data
to alternate between gathering the initial data, hence it needs less sample points than
the general model-free RL approaches. Secondly, fractional dynamical model is the
key element in our algorithm to improve/guarantee the prediction accuracy. The
experiments on the blood glucose (BG) control to dynamically predict the desired
insulin amount show that the proposed non-Markovian framework helps in achieving
desired levels of BG for longer times with consistency.

The richness of complex systems cannot be always modeled as Markovian dynamics.
Previous works have shown that the long-range memory property of fractional differ-
entiation operators can model biological signals efficaciously and accurately. Thus,
we have modeled the blood glucose as non-Markovian fractional dynamical system
and developed solutions using reinforcement learning approach. Finally, while the
application of non-Markovian MBRL open venues for real-world implementation but
proper care has to be taken especially when we have to deal with the healthcare
systems. The future investigations would involve more personalized modeling capa-
bilities for such systems with utilization of the domain knowledge. Nonetheless, we
show that the use of long-range dependence in the biological models is worth explor-
ing and simple models yield benefits of compactness as well as better accuracy of the
predictions.

97



Chapter 8

Neuron Particles

Unlike existing work that assumes that the neuronal spike trains are Markovian and
models their activity through the Poisson point processes formalism, we show that
the inter-spike intervals are more regular, possess long-range memory and fractal
characteristics and their statistics are better described by fractional order partial dif-
ferential equations. Moreover, we show that the microscopic statistics encode emer-
gent macroscopic topological properties about the underlying network, and display
superior predictions of animal behavior during multiple cognitive tasks. Through sim-
ulations, we further discover how the macroscopic neural network activity influences
the microscopic statistics of neuronal spiking dynamics. This framework formalizes,
generalizes and unifies the mathematical modeling of microscopic neuronal dynamics
while opening new analytical avenues for cognitive and sensory computational neu-
roscience including detecting and studying cognitive and sensory abnormalities or
psychiatric disorders.

8.1 Neuron Particles Model

We introduce a novel concept of neuron particles to explain the causal fractal memory
and scale component in the spike trains. We define the inter-spiking intervals (ISI)
in the spike trains as neuron particles of the size corresponding to the length of ISI,
Figure 8.1 (left). As shown in Figure 8.1 (right), the neuron particles start from the
origin of space-time and make a jump when the associated ISI recur in the spike train
at time t. The jump made by a particle in space is a fixed proportion of its size.
Therefore, smaller particles make smaller jumps and bigger particles bigger jumps.
The neuron particles traverse trajectories X(t), which we model as realization of a
multi-parameter fractional partial differential equation (FPDE) for each spike train
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Figure 8.1: Neuron particles extracted from discrete events data. (Left) Particle size is proportional to the inter-event
times, (Right) and the corresponding trajectories X(t) of the particles across time t.

as follows
tDβ

∗u(x, t) = D × xDα
θ u(x, t), ∀x ∈ R,∀t ∈ R+, (8.1)

The space-time fractional diffusion equation captures the scale and fractal memory
using fractional Riesz-Feller (Feller, 1962) (order α, skewness θ) and Caputo time-
fractional (Caputo, 1967) (order β) derivative, respectively. For more details, we refer
to Chapter 4. The trajectories are used to estimate the parameters of the FPDE using
the fractional moments algorithm, Algorithm 3. For constructing the trajectories, we
first need to identify the eligible particles from the ISI.

The procedure to obtain the neuron particles, Neuron Particles Process (NPP), is
formally outlined next.

8.1.1 Neuron Particles Process

A neuron particle trajectory is computed by identifying the repeated patterns in
the spike train data at various scales. The spike train data recorded from a single
unit is represented as a sequence of inter-arriving intervals T = τ1, τ2, . . . , τM which
is resulted from M + 1 spike times. A particle is termed as unique inter-spiking
interval, and for the computational purpose is used as a continuous range of inter-
spiking intervals. For complete details of neuron particles process is discussed in the
next subsection. For a particle τp with continuous range [τ l

p, τ
u
p ), we first define the

particle arrival times as

i∗ = inf{i|τ l
p ≤ τi < τu

p ∧ (i− 1)∗ < i},

ti =
i∗∑

j=1
τj,

(8.2)
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where, ti is the ith arrival time of the particle τp in the inter-arrival time sequence
T and 0∗ = 0. Next, using the arrival times, we now define the neuron particle
trajectory as follows:

X(t) = lτ̄p, tl ≤ t < tl+1, (8.3)
where, τ̄p can be defined as average particle size with τ̄p = (τl + τu)/2 and the start
time is taken as t0 = 0. The multiple trajectories are used as input for the FPDE
estimation Algorithm (Znaidi et al., 2020) using moments approach.

8.1.2 Neuron Particles Algorithm

The neuron particles process (NPP) aims at obtaining a computational version of the
neuron particles from the real-world spike trains. For a scenario where the inter-spike
intervals (ISIs) belong to a set of finite cardinalities, for example, Cantor spikes (in
Section 8.1.3), the neuron particles can be uniquely identified. However, for a general
setup, such assumptions do not hold and ISIs are some real numbers, identifying
unique ISIs (or neuron particles) is not computationally useful. Therefore, we resort
to ‘range of ISI’ as ‘neuron particles’, for the sake of computation, as we discussed
in the previous section. We now present a novel algorithm NPP in Algorithm 8, that
computes neuron particles from the spike train data which is also pictorially shown
in the Figure 8.2.

8.1.3 Cantor Spikes

The multiscale phenomena and causal fractal memory captured by neuron particles in
a spike train can be understood and validated by the hypothetical concept of Cantor
spikes. Cantor sets (Vallin, 2013) are formed by repeated deletion of a fixed ratio r
from a unit interval [0, 1] as shown in Figure 8.3 (Top). The Cantor sets have numer-
ous remarkable properties, and particularly useful in our case, is its fractal nature
(statistical self-similarity). We generate Cantor spikes such that the successive ISIs
are deleted segments of a Cantor set from left to right for given depth N and ra-
tio r. The estimated values of scale and fractal memory parameters using neuron
particles concept for Cantor spikes are shown in Figure 8.3 (bottom). The box di-
mension captures the fractality of Cantor spikes. We note that different depth N
generate different lengths of Cantor spikes (2N) as well as different neuron particles
(r, rρ, . . . , rρ(N−1)), where ρ = (1 − r)/2. From Figure 8.3 (bottom), we see that the
fractal memory parameter β primarily is a variant of the fractality measure (box
dimension) while estimations for various depths N cluster together. Therefore, the
memory β captures fractal repeating patterns at various scales and does not depend
on the depth. The overlap in scale parameter α of Cantor spikes across different box
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Algorithm 8: Neuron Particles Process (NPP) Algorithm
Initialization: Given a spike train series with the sequence of inter-spike
intervals (ISI) as T = τ1, τ2, . . . , τM , a binning algorithm A, an initial number of
neuron particles ni, lower/upper acceptable values of ISI frequency as lb/ub.
1: Using algorithm A with number of bins ni get the histogram of ISI sequence T

with bin boundaries (τ l
1, τ

u
1 ), (τ l

2, τ
u
2 ), . . . , (τ l

ni
, τu

ni
) and bin counts b1, b2, . . . , bni

.
The constraint on data sequence T is such that b1 ≥ lb, otherwise terminate the
NPP algorithm.

2: for i = 1, 2, . . . , ni do
3: if bi > ub then
4: For the data subsequence T ∩ {τ |τ ∈ [τ l

i , τ
u
i ) get the histogram with number

of bins as b̂i = ⌊bi/ub⌋. Update the histogram of the sequence T with the
new bin edges and bin counts. This is termed as ‘split’ step. The updated
histogram of T has mu ≥ ni bins with bin counts b1, b2, . . . , bmu .

5: end if
6: end for
7: With i = mu,
8: while i > 1 do
9: if bi < lb then

10: Start with ith bin and ‘merge’ consecutive bins such that merged bins have
bin counts exceeding lb or with b̂i = bi, iterate over j = i− 1, i− 2, . . . , 1 as
b̂i = b̂i + bj till b̂i ≥ lb. Update the new bin boundaries as (τ l

j , τ
u
i ) and ith

bin count b̂i and set i = j − 1. This is termed as ‘merge’ step. The resulting
histogram after merging has total bins m with bin counts b1, b2, . . . , bm.

11: end if
12: end while
13: Output the final iterated bin edges (τ l

1, τ
u
1 ), (τ l

2, τ
u
2 ), . . . , (τ l

m, τ
u
m). The bin edges

are referred as neuron meta-particles which consists of neuron particles such
that ith meta-particle represents a group of particles with size ranging between
[τ l

i , τ
u
i ).

dimensions by varying N is due to common neuron particles among different (r,N)
pair. Finally, a special case of uniform spikes is shown at the bottom (in pink) where
the ISIs are equal. Since the increments, or ISIs, are constant across time, the uniform
spike train is straightforwardly modeled as a first order linear differential equation

∂u(x, t)
∂x

= D × ∂u(x, t)
∂t

.
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Figure 8.2: Neuron particles process. (a) A histogram of the inter-spike intervals (ISIs) from a single unit spiking
data (see the spike train on top) is generated. Each interval is treated as a group of particles with the minimum radius
τ l

i and the maximum radius τu
i . Two specified parameters ‘ub’ and ‘lb’ determine the upper- and lower-bound on the

number of particles in each group. (b) Groups with a larger number of particles than the upper bound are broken
into smaller groups, while smaller groups are combined using ‘split’ and ‘merge’ steps, respectively. The iteration
continues until each particles’ group has a number of particles in the range [lb, ub]. (c) In the resulting histogram of
ISIs, the ISI intervals are termed ‘neuron meta-particles’ and are such that the count of particles within them are in
the range [lb, ub]. In the current work, we refer to the “neuron meta-particles” simply as “neuron particles”.

Also, by using the neuron particles concept, we see that for the uniform spikes, the
estimated value of α = β = 1 in Figure 8.3 (pink dot) represents first order differentials
for both space and time.

8.2 Topological Features of Neuronal Networks in-
fluence the Microscopic Neuronal Dynamics

The complex patterns in the neuron spikes are the result of the individual neuron
transfer function and the network feeding into each neuronal unit (Holtmaat and
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Figure 8.3: (Left) Cantor set example to generate scale-free spike train patterns. The deletion ratio (r) can vary from
0 to 1 (0 < r < 1) and division factor N > 1. A special case of uniform spike trains with equal ISI across time in pink
color. (Right) Estimated fractional PDE parameters (α, β) for Cantor spike trains with different box dimensions. The
box dimension is the slope of the logarithm of the number of ISI of size ϵ, i.e., log(ϵ) and the logarithm of the inverse
ISI size, i.e., log[1/ϵ]. For a Cantor-like spike train, resulting from the corresponding Cantor set, the box dimension
is − log(2)/ log((1 − r)/2). The special case of uniform spikes in pink can be represented as a differential equation in
pink in c which has α = β = 1. The estimated values of (α, β) for uniform spikes is pink dot in e.

Caroni, 2016; Parr et al., 2019). An individual neuron is part of multiple closed-loops
of different lengths that induce a complex pattern of recurring ISIs. By capturing the
multi-scale repeating patterns in the ISIs, from the network perspective, β is related
to the cumulative effect of multiple closed-loops around a neuron in the network.
The network has influence on the statistics of the spike train (Trousdale et al., 2012;
Pernice et al., 2012). The scaling of path lengths from a neuron to its neighbors at
different hops can be captured using node-based multifractal spectrum. The scale of
ISI which is represented using α is intuitively related to the node-based multifractal
dimension. We studied the effects of a wide range of complex network topologies on
the fractal memory and scaling properties of a single neuronal spike train.
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Figure 8.4: Network topologies influence the memory of neuronal dynamics. (a), An Erdös-Rényi random
network with probability of existence of edge being p. The probability varies linearly from 0.05 to 0.30 and consequently
increases the average node-degree. The excitatory neuron node-degree scaled histogram is in red bars and the black
curve fits the histogram with Gaussian distribution. The variation of the excitatory neuron β with respect to p is
represented as box plots. The line across the box plot indicates the median, and upper and lower hinges indicate 75th
and 25th percentiles (making IQR), respectively. The whiskers extend to the lowest and the largest values but within
1.5xIQR. (b) Dorogovtsev (Dorogovtsev, Mendes, and Samukhin, 2000) extension of Bárabasi-Albert (Barabasi and
Albert, 1999) scale-free network with outgoing links m and attraction parameter a = m. The excitatory neuron
node-degree scaled histogram is shown in red bars and the black curve fits the histogram using analytical expression
(Dorogovtsev, Mendes, and Samukhin, 2000). The outgoing links m varies from 50 to 300, and the variation of
excitatory population fractal memory parameter β is shown as box plots. (c) Multi-fractal network (Palla, Lovász,
and Vicsek, 2010; Yang and Bogdan, 2020) with base measure P = [0.6, 0.5; 0.5, 0.4](m = 2) and length measure
L = [l, 1 − l] with l variation linearly from 0.1 to 0.9 for two values of depth K = 3, 4. The excitatory neuron
node-degree scaled histogram is in red bars and the black curve fits the histogram with the analytical expression of
degree distribution (Palla, Lovász, and Vicsek, 2010). The excitatory neuron population fractal memory parameter
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β is represented as box plots. (d) Prediction spectrum of the networks using α and β computed from a single spike
train. For each tuple (α, β) the most likely network is indicated by its corresponding color. For each network type
(topology as well as parameters), 50 random realizations of networks were generated, and the estimated parameters
for the neuron populations were concatenated for box plots.

The variation of fractal memory parameter β with different network topologies is
shown in Figure 8.4. For Erdös-Rényi (Erdos and Renyi, 1960) (ER) model of a
random network, we see in Figure 8.4a that as the network becomes denser from the
sparse state (p = 0.05) the memory parameter β of the ensemble increases and then
decreases. A saturation occurs for dense networks with p > 0.2. The large number of
connections provides a large input current to the neurons, thus, saturating the spiking
patterns. The existence of a maximum point in the memory parameter shows that for
some topologies (near p = 0.08), the network spikes are in a structured fashion. Next,
in Figure 8.4b, we see that for scale-free Bárabasi-Albert (BA) networks, the fractal
memory decreases as outward links (m), independent of total number of neurons in
the network, increases. Finally, for multi-fractal network (MFN) in Figure 8.4c, the
trend of fractal memory is inversely proportional to length measure l for depth K = 2.
However, as depth K increases the network gets sparser, and for K = 4 the fractal
memory attains a peak for l near 0.5 and then decreases. Taken together these results
suggest that critical information about the type of network feeding into the single
unit spike trains can be deduced from analyzing the spike trains using the neuron
particle method. The information is not complete, but over certain values of α, β, and
assuming a finite range of networks, we can describe the probability of features of the
underlying network given a single spike train. To the best of our knowledge this has
never been accomplished before. Such a probabilistic representation of the topology
of the underlying network enables predictions of neural dynamics and behavior.

Using the observed variation in the fractal memory parameter β (Figure 8.4a-c) and
scale parameter α (as presented in (Gupta et al., 2021b)), a prediction spectrum is
constructed in Figure 8.4d (full version in (Gupta et al., 2021b)). For each constituent
networks ER, BA, and MFN with various parameter ranges, we show the most likely
network that an estimated tuple (α, β) belongs. In the low values of α and β, the
most probable network is BA with m ∼ 300, and ER with high connection probability
(∼ 0.19). On the contrary, high values for both parameters indicate ER with low
connection probability. For some tuple values, almost all networks are equiprobable,
and hence, it is difficult to predict a single one.

8.3 Neuron Particles Predict Behavior

To determine the extent to which the neuron particle analysis of single unit data is
capable of predicting the behavior of an animal during a cognitive task we analyzed a
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Figure 8.5: Direction discrimination task by the animal.

few different publicly available data sets. In the first data set, hundreds of single units
were recorded simultaneously in the pre-arcuate gyrus of Macaque monkeys while they
were performing a direction discrimination task (Kiani et al., 2014). Briefly, on each
trial, the monkey views moving dots on a screen for 800 ms. A fraction of dots moves
coherently in the same direction towards one target or another (T1 or T2) while the
rest of the dots are displaced randomly (Figure 8.5). After the lapse of a random
delay period, upon receiving a Go cue, the monkey makes a saccadic eye movement
towards the target T1 or T2, where it thinks the dots were moving. We compared
the prediction accuracy of the monkey’s choices based on a commonly used mean
firing rate approach versus the neuron particles approach (Figure 8.6). We found a
performance gain, with an averaged difference of 5.75% around the Go cue. Around
the saccade initiation time, the spikes are distinct enough across the units such that
both the firing rate and neuron particles trajectories perfectly predict the choice.
However, neuron particles consistently outperform during motion viewing and delay
periods.

In an additional experiment, we randomly (uniform) sampled only 50% of the units to
mimic a partial knowledge setup and predicted the monkey’s choice from the reduced
data. The difference between firing rate and particles approach around the Go cue
is 6.74%. With half the population, the prediction accuracy gap further increases.
Another partial data setup is presented in the Fig. S7, where for each single unit we
randomly removed some of the spiking event data. We see that when using only 50%
of the data from each unit, the neuron particles approach suffers 1.76% performance
loss, while mean firing rate suffers 4.70% loss at Go cue. Next, on using only 25% of
the spiking data from each unit, the performance loss of neuron particles/mean firing
rate is 4.52%/11.23% at Go cue. The fractality in the spike trains is less affected if
some spikes are removed. The particles approach extracts more information from the
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Figure 8.6: A comparison of choice prediction using recordings of neuron ensembles for neuron particles and mean
firing rate approach. Both approaches use logistic regression with linear kernel and train/test split as 90/10. The
particles trajectory is sampled every 20ms, and the firing rates are computed in a sliding 100ms bin with 20ms slide.
The mean accuracy ± s.e.m. (across sessions and resampling) is indicated in dark and shaded colors. An additional
case of 50% is considered, where to mimic the reduced data scenario, out of total, 50% uniformly random sampled
units are taken, respectively. The sampling is done 5 times independently.

same data which in turn can be utilized to better discriminate the spike patterns over
time to predict the monkey’s choice.

8.4 Scale and Memory Parameters are Invariant
to Network Size

The features used to infer the network topological structure from a single unit should
ideally be independent of the network size. Additional experiments in Figure 8.7
suggest that the scale (α) and fractal memory (β) parameters are indeed invariant
to the network size under consideration. In Figure 8.4, the network size is N = 1000
and we take this as baseline to observe the network size effects upon changing N .
By varying the network size from N = 1000 to N = 10000, the patterns in α and
β are relatively stable for each network topology. This shows that the topology
shapes the fractality of each network unit, independently of its size. The neuron
particles, by capturing such fractality, can differentiate among different topological
structures to a certain extent. We note that, for large BA networks with higher
values of m, many connections occur for some nodes, and thus parameter estimates
are variable due to massive incoming currents in the hub nodes. For the smaller
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Figure 8.7: Memory and scale invariance to the network size. Network configurations for Erdös-Renyi (ER),
Barabasi-Albert (BA), and Multi-fractal network (MFN) is same as in Figure 8.4. For the BA networks, the smaller
networks N = 250, 500 and 750, the larger values of m are not feasible to simulate a power-law degree distribution.
The highest value of m is limited as m = 110, 210, 290 for N = 250, 500, 750, respectively. The median of node
parameters (scale α, memory β) is shown for different network size for each network topology in a, b, c.
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Figure 8.8: The estimated parameters for monkey 1 across three epochs: motion viewing (200-800 ms after motion
onset), delay (200 ms after dots offset to -50 ms from go cue), and go+saccade (go cue to 200 ms after saccade
initiation). The parameter tuple was separately calculated for motion in favor and against the neuron’s preferred
saccade (+ and – motion coherence, respectively). (d, e) Gaussian-kernel smoothed densities for α, β across three
epochs and 2 coherence levels with straight line being the median.

networks, to maintain the same topological setup, the paucity of stimulating currents
leads to a reduction in the spiking activities of the neurons. Therefore, for smaller
networks the extracted network fractality patterns saturate and diverge from the
bigger networks. The patterns quickly change for all three network types between
N = 250 to N = 750. For ER and MFN topologies with dense neuron connections,
the reduction in N doesn’t impact the patterns as expected due to sufficient current
flow. Finally, the maximum network size used in the current experiment was N =
10000, because of computational restrictions. However, the current observations of
similar patterns in (α, β) should hold for larger neuron networks as well. From these
comprehensive experiments, we observe that by making the networks larger and with
proper upscaling of the stimulating currents, the spiking activity of each neuron does
not diminish. Therefore, the fractality induced by network topology in the spiking
data can be captured.

8.5 Stability of Memory and Scale Parameters

The neuron particles model also enables tracking functional changes in the network
topology across species, tasks, and task epochs. Figure 8.8 shows the inferred model
parameters (α, β) for different motion directions and epochs of the direction discrim-
ination task in the monkey pre-arcuate gyrus. The memory parameter β is highly
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stable, compatible with the stability of intrinsic connectivity and the underlying dy-
namics of neural responses across tasks and task epochs in this region of the mon-
key cortex (Kiani et al., 2014). Since β reflects the collective effect of the multiple
closed-loops in the topology, we predicted little change across task epochs. The scale
parameter α which reflects path lengths and in-degree is also stable (Figure 8.8). The
stability of α and β despite obvious changes in the sensory inputs and motor outputs
involved in the three distinct epochs suggests the neuron population-level response
statistics and network topology are stable. This stability is reminiscent of the ran-
dom network topology which has been hypothesized to be present in the pre-frontal
cortex (Rigotti et al., 2013) to support adaptive learning and behavior. In contrast,
if changes in input and output across epochs were associated with emergence of new
loops or changes in path lengths of network (e.g., activation of a hub neuron in a BA
network), such stability would be unexpected.

8.6 Discussion

In this chapter, we discussed a novel statistical physics inspired model, which captures
the causal memory and fractal patterns of inter-spike intervals recorded in vivo from
single neurons. More precisely, we define the “neuron particle” as the time interval
between consecutive spikes, that through its path-based history captures the degree of
long-range memory emerging in neuronal activity due to intrinsic local computation
and interaction with other networked neurons. We first show how the hierarchical in-
formation encoded in the spike trains is captured using the proposed neuron particles
model (Figure 8.1). Next, we show how the neuron particles model can encode infor-
mation about the underlying neural networks that were not directly and completely
observed (Figure 8.4).

Although it is widely recognized that the pattern of spike trains in one specific neuron
is a reflection of a network of interacting neurons and glia connected to it, to the best
of our knowledge, no previous study has shown that it is possible to predict network
topology based on single unit activity. Previous studies largely focused on pairwise
correlations or higher order statistical features based on neural population responses
(Trousdale et al., 2012; Pernice et al., 2012). Although knowledge of network connec-
tivity enables predictions of neural responses features, the converse has been elusive
until now (Kispersky, Gutierrez, and Marder, 2011; Sporns, 2012).

The proposed method of neuron particles generalizes to any complex network with
interactions between nodes with discrete time intervals between activities. As an
example, first, the online hate events which have been linked with several extremist
activities (Johnson et al., 2019) could be used to infer the underlying terrorist-group
network structure. Monitoring the complete network is difficult as such individuals
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are very discreet. Using the ‘social particles’ analogy, using very few users’ data, the
network topology could be inferred using computed fractality of events. Armed with
the topology, it may be possible to predict the timing and implicated parties involved
in a terrorist attack by detecting activity in only a few of the nodes, and not necessarily
the actual perpetrators. As another example, climate change events impact rainforests
across the globe. The detailed forest maps (Réjou-Méchain et al., 2021) and tree
species-based information could be used to make a time-varying complex network.
Extracting the fractality in the climate change events by ‘climate particle’ jumps
and observing its variations by changing tree population network, the next damaging
event, especially for vulnerable tree species could be foretold. Third, the impact of
the introduction of species by humans to the network of interactions among other
species brings ecological and evolutionary consequences (Fricke and Svenning, 2020).
Capturing the change in the network over a global scale is challenging, but using the
particles approach, the change in the change in α and β obtained using a ‘species
particles’ jumps from only a handful of nodes can provide a change in the underlying
network topology. The time fractality computed over multiscale interactions provides
a way to capture human interventions over several years.

Our advance has several important implications for neuroscience applications. The
first is that the neuron particles model can be used to analyze single unit data to
capture the causal information and long-range memory contained in the statistically
self-similar (repeating) patterns of time intervals between spikes for superior inference.
The underlying networks of the brain could be inevitably more complex and may not
be a direct match with any of the considered network topologies here. But, since the
considered networks in Figure 8.4d span a wide spectrum of complex networks, they
can be treated as canonical networks. Future studies are needed to consider scenarios
where the network is a blend of various canonical structures, and whether the neuron
particles can extract proportions of these constituent networks.

Second, if features of the underlying neuronal networks can be decoded then theoret-
ically better predictions of behavior should be possible from single unit recordings.
Indeed, the real-world examples show how using the neuron particles produces su-
perior predictions of behavior when compared to conventional approaches which use
the mean firing rates (Figure 8.6). By the same logic, better predictions of neuronal
activities should also be possible. If the network can be inferred, then that should
constrain possible paths of information in response to new stimuli, or specific neu-
ronal activation patterns. To enable predictions of neuronal responses to new stimuli,
future work should develop causal inference techniques to identify composable sets
of multi-fractional PDEs for multi-dimensional trajectories. Doing so would enable
to study the interactions of neurons explicitly using population spike trains. The
working hypothesis of the current work is that the reflection of interaction with the
complete network is present in the spike train of each neuron, which we capture
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through α, β. However, with multi-dimensional modeling, a better prediction could
be made of joint neuronal activities, for example, inter-neuron spike correlations.

Third, the neuron particles model can allow insights into network structures that
enable how the brain processes information. In the brain, interactions of large neural
populations implement computations, decisions, and perceptions. The brain, there-
fore, does not need to rely on the neuron particle concept for its computations. In
fact, it is unlikely that the brain extracts information in an analogous way as our
statistical model. However, the neuron particles model provides a way to obtain in-
formation about the underlying network structure and dynamics, and in this manner,
has the potential to provide new insights into mechanisms of brain function that were
not possible before. For example, it may be possible to infer that a group of neurons
or glia are disrupted by detecting the change in the network dynamics through a
single unit, even if the single unit is intact. Although this speculation would need to
be confirmed using experimental data from single units where specific known defects
are introduced in a circuit to see how well the neuron particles perform in identifying
the defect (i.e., needle in the haystack), the implications are tantalizing. For exam-
ple, it may be possible to measure a reasonable number of neurons and be able to
make predictions about the early onset of neurodegenerative disease, epilepsy, brain
cancer or other neurological disorders by detecting a change in the network dynamics
without directly measuring the implicated tissues.
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Chapter 9

Conclusion and Future Directions

In this thesis work, we were primarily concerned with the role of unknown sources
towards modeling techniques. Apart from some very controlled toy settings, whether
we acknowledge or not, the unknown unknowns (UUs) contribute towards the ob-
served phenomena. We have developed several mathematical tools to take care of the
unknown sources for different kind of data streams.

In Chapter 2, we presented a fractional-order dynamical system with unknown un-
knowns (i.e., inputs). By relaxing various assumptions, we further developed other la-
tent variable models. The applications were demonstrated for real-valued time-series
data format. We show better modeling for electroencephalogram (EEG), spatio-
temporal signals, for example, blood pressure, heart rate, BOLD signals. Next, we
have also shown that challenging and emerging applications like brain imagined task
predictions can be solved effectively using the proposed mathematical tools. We have
also extended the fractional modeling to model-based reinforcement learning (RL)
paradigm. After showing performance bound for non-Markovian RL, we have shown
applications for some real-world problems of blood glucose control through a diabetes
simulator. A different modeling technique but following the same theme of UUs is
presented in Chapter 3, where the mathematical models were developed for event-type
data streams, for example, neural spiking trains.

Next, we have developed series of mathematical techniques building on the concepts
of partial differential equations (PDEs). First, we have demonstrated two algorithms
to estimate the arguments of fractional diffusion equations from a limited set of data
streams in Chapter 4. Using the fractional moments approach, we have shown that
the proposed algorithms were accurate and data-efficient. Second, we have taken a
‘neural operators’ approach to solve PDEs and achieve time-efficiency. After project-
ing the operator kernel to the multiwavelet domain and then utilizing the smoothness
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property, we have achieved significantly better results as well as data efficiency for
deep learning based PDE solvers in Chapter 5.

Through our work, we have elaborated that complex networks and partial differential
equations go hand in hand. We presented a novel technique of neuron particles to
estimate the fractal causal memory in the spiking events-type data. By extracting
particle trajectories from spiking data, and modeling them as fractional PDEs, we
have observed that scale and memory parameter varies uniquely with the underlying
network topology.

Future directions: The current thesis has worked along the way to develop math-
ematical models with unknown unknowns and make some interesting findings about
the causal fractality. In this pursuit, we have solved some finite number of problems
and also identified numerous problems that are interesting for future research.

An important assumption of the fractional dynamical models in the Chapter 2 is
constant fractional-order systems. A more general approach would be to have time-
varying fractional-order dynamical model. Wavelets are useful in computing such
coefficients and the work of Gu et al. (2020) could be helpful in writing time-varying
ordinary differential equations (ODEs) for fractional coefficients. Some immediate
future directions to pursue are applications of the proposed mathematical models
on spatio-temporal signals. In this work, we are primarily concerned with the EEG
signals, however, the current formulation could be successfully applied to other ap-
plications, including, physiological signals from portable devices to monitor critical
health events. Preliminary work has demonstrated promising results on predicting
viral infections and respiratory diseases using readily available data from wearable
devices.

Modeling of the data through PDEs is a futuristic approach for machine learning
(ML) methods. Through our work on fractional diffusion we have observed critical
phenomena can be modeled with less data using fractional PDEs. Implicitly building
physics-inspired fractional PDEs inside the ML models could be next generation of
artificial intelligence (AI) models. The recent success of neural ODEs (Chen et al.,
2019) is just one example long this long path. In the context of the current work in
Chapter 4, the fractional PDE for diffusion process is assumed to be carrying single
fractional exponents, both in space and time. Relaxing such assumption and having
generalized equation with multiple scale and time fractional exponents would offer
flexibility in compact modeling of challenging fast-varying, non-stationary, memory
dependent, and multi-scale data streams. A step towards this direction is made by us
in Yin, Gupta, and Bogdan (2020) but the generalization is again an open problem
for now.

We saw an application of fractional PDEs to model the neural spiking data in Chap-
ter 8. The multi-dimensional information from a single spike train is used to infer
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the underlying network topology. However, a promising future direction is to study
coupled fractional PDEs such that multiple spike trains could be modeled together
using neuron particles. Doing so would address the long-standing problem of how
network topology shapes the neural spike correlations? Estimating spike correlations
and showing their variations network topology would unify the existing but two sepa-
rated branch of results in experimental neuroscience. The network topologies knitting
the neurons together in the brain are not restricted to the simple canonical topologies
considered in Chapter 8. Another interesting direction to pursue is showing how a
mixture of network topology influence the spiking activities. A follow-up question to
address in the reverse direction would be: how to isolate the contribution of canoni-
cal network topologies on the observed outcomes? Such inference would also help in
the long-run to design artificial neural networks which can mimic biological neural
network functionalities.

The neural operators delegate the time-consuming part of the PDE solvers to the
training phase, which then has to be done only once. However, one issue with the
current line of work of neural operator, as in Chapter 5, is that they are not regu-
lated to satisfy boundary conditions. An immediate promising direction is to enable
black-box neural operators to be constrained to satisfy boundary conditions. This
would be a merger of physics-aware neural operators and the proposed data efficient
neural operators. Availability of the data is itself a restriction on learning neural
operators. In certain setups, the values of force, velocity fields are only available at
the boundaries. Developing neural operators that could learn the solution with only
a partial knowledge of boundary values is an interesting extension to Chapter 5 work.
The operator learning tool could be extended to model coupled PDEs and jointly
learn the cross-kernel with being data-efficient. Some of the problems of inferring
causality could also be formulated as PDE with causal component modeled directly
inside the operator kernel. Such approaches could enable detecting causality in the
non-linear systems in a model-agnostic fashion and generalize over linear models of
Granger causality (Granger, 1969).
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Appendix A

Time-varying Complex Networks

A.1 EM Formulation

We present the detailed construction of EM like algorithm in this section. In our
formulation, the observed (incomplete) data is x and z while u is the hidden data,
therefore the complete data would be (z, x, u). Let us consider, Σ = σ2I, and denote
θ = {A,B}. At the lth iteration we denote

u[k]∗ = arg max
u

P
(
u
∣∣∣z[k], x[k]; θ(l)

)
.

We can enforce Laplacian prior for u[k] for sparsity (any other prior could also be
used) such that P(u[k]) ∝ exp(−λ||u[k]||1). Therefore, u[k]∗ is then derived as

u[k]∗ = arg max
u

logP
(
u
∣∣∣z[k], x[k]; θ(l)

)
= arg max logP(u) + logP

(
z[k], x[k]

∣∣∣u; θ(l)
)

= arg max− 1
2σ2 ||z[k]− A(l)x[k]−Bu||22 − λ||u||1.
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We have approximated the conditional distribution as P(u[k]
∣∣∣z[k], x[k]; θ(l)) ≈ 1{

u[k]=∗
u[k]
}.

In the final step of expectation, we can write

Q(θ; θ(l)) = Eθ(l)

[
logPc(z[k], x[k], u[k])

∣∣∣x[k], z[k]
]

= Eu[k]|z[k],x[k];θ(l)

[
logP

(
z[k], x[k], u[k]; θ(l)

)]
= Eu[k]|z[k],x[k];θ(l)

[
logP

(
z[k], x[k]; θ(l)

)]
+ logP

(
u[k]

∣∣∣z[k], x[k]; θ(l)
)

= logP
(
z[k], x[k]; θ(l)

)
1{

u[k]=∗
u[k]
},

where Pc is used to signify the likelihood of the complete data. For the Maximization
step, we can simply write

θ(l+1) = arg max
θ
Q(θ; θ(l))

= arg max
θ

logP (z[k], x[k]; θ)1{
u[k]=∗

u[k]
},

or in other words,

[a(l+1) T
i , b

(l+1) T
i ]T = arg min

a,b
||Zi −Xa− Ub||22,

A.2 Proof of Proposition 1

Proof. We show that the likelihood for incomplete (observed) data is bounded at each
EM update step. Let us denote the likelihood of the observed data in relation to the
parameter A(l), B(l) as

P(A(l), B(l)) = P(z, x;A(l), B(l)), (A.1)

which is further written as

P(A(l), B(l)) ∝
∫

P(z, x
∣∣∣u;A(l), B(l))P(u)du

= C
∫

exp
(
− 1

2σ2 ||z − A
(l)x−B(l)u||22

)
exp (−λ||u||1) du

≤ C
∫

exp (−λ||u||1) du ≤ O(1),

where C is the normality constant. Therefore P(A(l), B(l)) is bounded for every iter-
ation index l ≥ 0.
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Appendix B

Spiking Event Complex Network
Models

B.1 Proof of Theorem 3.1

Proof. The Expectation step of the algorithm is concerned with computation of
P (∆U i

k|N1:C
1:K ; θ) which is not computationally tractable in various cases. In this

work, we will approximate it as P (∆U i
k|N1:C

1:K ; θ) = 1∆U i
k

=∆Û i
k

(this is sometimes re-
ferred as Hard EM (Murphy, 2012)), where

∆Û i
k = arg max

∆U i
k

logP (∆U i
k|N1:C

1:K ; θ). (B.1)

The equation (B.1) can be expanded using Bayesian formulation, and the choice of the
prior distribution of ∆U i

k is critical. Intuitively, ∆U i
k represents all the hidden sources,

including undetected neuron activity and environmental stimuli. Unlike binary spike
count ∆N c

k , the unknown artifacts ∆U i
k don’t necessarily have to be discrete and

non-negative, and are real values without further constraint. While there can be
wide selections of priors, in this work we are motivated by using conjugate priors
approach (Raiffa, 1974) to have computable expressions. Therefore, we assume the
log-Gamma prior for ∆U i

k as it collaborates well with the existing CIF model. The
log-Gamma distribution (Demirhan and Hamurkaroglu, 2011) can be mathematically
written as

P (∆U1:I
1:K ; θ) =

I∏
i=1

K∏
k=1

eβ∆U i
ke−e

∆Ui
k

/α

αβΓ(β) ,∆U i
k ∈ R, (B.2)
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where α is the shape parameter and β is the scale parameter. We also assume that
the unknown artifacts behavior are independent and identical distributed across time
and for each unknown sources. Therefore, the equation (B.1) can be expanded as

∆Û1:I
1:K = arg max

∆U1:I
1:K

logP (∆U1:I
1:K |N1:C

1:K ; θ)

= arg max
∆U1:I

1:K

{
logP (N1:C

1:K |∆U1:I
1:K ; θ) + logP (∆U1:I

1:K ; θ)
}

(a)= arg max
∆U1:I

1:K

C∑
c=1

K∑
k=1
{∆N c

k log λc
U(k)− ωc(k)τλc

U(k)}+
I∑

i=1

K∑
k=1

{
β∆U i

k −
1
α
e∆U i

k

}
,

(B.3)

where in (a) we have used the definition of λc
U(k) and ωc(k) from equation (3.7) and

(3.8), respectively. Now for the maximization, the equation (B.3) is an unconstrained
optimization problem and we solve it by setting the partial derivatives with respect
to νi0

q = e∆U
i0
q to be zero for each q = 1, 2, ..., K, and i0 = 1, 2, ..., I. Therefore, we

obtain

β −
νi0

q

α
+

C∑
c=1

min(q+M,K)∑
k=q+1

∆N c
kγ

i0
k−q(c)−

C∑
c=1

min(q+M,K)∑
k=q+1

ωc(k)τγi0
k−q(c)λc

U(k|ν) = 0.

(B.4)
The maximum likelihood (ML) estimate of νi0

q is computed with a fixed-point iterative
method. We rearrange the terms in equation (B.4) with additional exponent ti0

q and
build the fixed-point function as following.

Gi0
q (ν) = νi0

q ×


C∑

c=1

min(q+M,K)∑
k=max(q+1,1)

∆N c
kγ

i0
k−q(c) + β

C∑
c=1

min(q+M,K)∑
k=max(q+1,1)

γi0
k−q(c)ωc(k)τλc

U(k|ν) + ν
i0
q

α


t
i0
q

, (B.5)

where the fixed-point iterations would be νi0 (n+1)
q = Gi0

q (ν(n)) at iteration n. The
exponent ti0

q need to be chosen carefully such that the fixed-point iterations would
converge to the ML solution. We follow the procedure as mentioned in (Peters and
Coberly, 1976) to prove that Gi0

q (ν) is a local contraction and hence find the value of
ti0
q such that the fixed-point iterations are convergent.

Let us denote the ML estimate ν̂i0
q as the solution of fixed point equation νi0

q = Gi0
q (ν).

Now Gi(·) is a local contraction if ∥∇Gi(ν̂)∥ < 1, where ∇Gi(ν̂) is a matrix such that

[
∇Gi(ν̂)

]
q,p

=
∂Gi

q(ν)
∂νi

p

|ν=ν̂ . (B.6)
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The norm ∥∇Gi(ν̂)∥ is less than 1 if and only if the spectral radius ρ(∇Gi(ν̂)) < 1
(Pattern, 1973). After writing the ∇Gi(ν̂) in (B.6) using (B.5) and upon setting

ti0
q = l

ni0
q

di0
q

, (B.7)

where, 0 < l < 2 and

ni0
q =

C∑
c=1

min(q+M,K)∑
k=q+1

∆N c
kγ

i0
k−q(c) + β, (B.8)

di0
q =

C∑
c=1

min(q+M−1,K)∑
p=max(q−M+1,1)

min(p+M,q+M,K)∑
k=max(p+1,q+1)

γi0
k−q(c)× γi0

k−p(c)ωc(k)τλc
U(k|ν̂), (B.9)

we obtain
∇Gi(ν̂) = I −Bi, (B.10)

where the matrix Bi is non-negative and it has a positive eigenvector ν̂i with positive
eigenvalue l. Now, using the Perron-Frobenius theorem (Householder, 1964), given
the condition that l is the positive eigenvalue of Bi with positive eigenvector, the
absolute value of all other eigenvalues are less or equal than l. Thus, the spectral
radius ρ(∇Gi(ν̂)) = |1 − l| < 1. Hence, the fixed-point equations are convergent. It
should be noted that the denominator expression di0

q is depending on the ML estimate
ν̂ which is not available during iterations. We approximate the di0

q using the similar
counting arguments of (Chornoboy, Schramm, and Karr, 1988) to write the final
expression as in equation (3.5).
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Appendix C

Fractional Diffusion Equations

C.1 Preliminaries

C.1.1 Fractional Derivatives

C.1.1.1 The Fourier transform and the Riesz-Feller space-fractional deriva-
tive

Let (C.1) be the Fourier transform of a general function f(x),

f̂(κ) = F{f(x)} =
∫ +∞

−∞
eiκxf(x)dx, κ ∈ R (C.1)

and let (C.2),

f(x) = F−1{f̂(κ)} = 1
2π

∫ +∞

−∞
e−iκxf̂(κ)dκ, x ∈ R (C.2)

be the inverse Fourier transform. For a sufficiently well-behaved function f(x) we
define the Riesz-Feller space-fractional derivative of order α and skewness θ as{

F{xDα
θ f(x);κ} = ψθ

α(κ)f̂(κ), ψθ
α(κ) = −|κ|αei(sign(κ))θπ/2

0 < α ≤ 2, |θ| ≤ min{α, 2− α} (C.3)

xDα
θ f(x) = Γ(1 + α)

π
{sin[(α + θ)π/2]

∫ ∞

0

f(x+ ξ)− f(x)
ξ1+α

dξ

+ sin[(α− θ)π/2]
∫ ∞

0

f(x− ξ)− f(x)
ξ1+α

dξ}.
(C.4)
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The symbol ψθ
α(κ) is the logarithm of the characteristic function of a general Levy

strictly stable probability density with index of stability α and asymmetry parameter
θ (improperly called skewness) according to Feller’s parameterization.

C.1.1.2 The Laplace transform and the Caputo fractional derivative

Let
f̃(s) = L{f(t)} =

∫ ∞

0
e−stf(t)dt, ℜ(s) > af , (C.5)

be the Laplace transform of a function f(t), and let

f(t) = L−1{f̃(s)} = 1
2πi

∫ γ+i∞

γ−i∞
estf̃(s)ds, ℜ(s) = γ > af (C.6)

where t > 0 and af is a constant defined such that the product e−af t|f(t)| is bounded
for all t greater than some T (i.e., the constant af exists provided the existence of
the Laplace transform). For a sufficiently well-behaved function f(t) we define the
Caputo time-fractional derivative of order β, (0 < β ≤ 1) through

L{tDβ
∗ f(t)} = sβ f̃(s)− sβ−1f(0+), 0 < β ≤ 1 (C.7)

Hence, we can write

tDβ
∗ f(t) =

{
1

Γ(1−β)
∫ t

0
f (1)(τ)
(t−τ)β dτ, 0 < β < 1

d
dt
f(t), β = 1

. (C.8)

C.1.2 Stable distribution

A non-degenerate random variable X is called stable if for all n > 1, there exist con-
stants cn > 0 and dn ∈ R such that X1 + · · ·+Xn

d= cnX+dn
1, where X1, X2, · · · , Xn

are i.i.d realizations of X. The random variable X is strictly stable if and only if
dn = 0,∀n. It can be shown that the only possible choice for the scaling constants is
cn = n1/α for a certain value α ∈ (0, 2].

1The symbol d= designates the equality in distribution.
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C.1.2.1 Parameterizations of stable laws:

There are different parameterizations for stable distribution. The variety of param-
eterizations is caused by a combination of historical evolution, plus the numerous
problems that have been analyzed applying specialized forms of stable distributions.

1. A random variable X is stable if and only if X d= aZ + b where a ̸= 0, b ∈ R
and Z is a random variable with characteristic function ((Nolan, 2003))

E[exp(iκZ)] =
{ exp(−|κ|α[1− iζ tan πα

2 (sign κ)]) α ̸= 1
exp(−|κ|[1 + iζ 2

π
(sign κ) log |κ|]) α = 1 , (C.9)

where 0 < α ≤ 2, −1 ≤ ζ ≤ 1 2.

2. A random variable X is parameterized as S(α, ζ, c, µ; 1) if

E(exp (iκX)) = exp(iκµ− |cκ|α(1− iζsign(κ)Φ1)), (C.10)

where,

Φ1 =
{

tan(πα
2 ) α ̸= 1

− 2
π

log |κ| α = 1 . (C.11)

The distribution is assumed to be standard when the scale c = 1 and the location
µ = 0 ((Nolan, 2003)).

3. A random variable X is S(α, ζ, γ, δ; 0) ((Nolan, 2003)) if

X
d=
γ

(
Z − β tan πα

2

)
+ δ α ̸= 1

γZ + δ α = 1
, (C.12)

where the Z is defined at (C.9). This can also be rewritten as:

E(exp (iκX)) = exp(iκδ − |γκ|α(1− iζ sign(κ)Φ0)), (C.13)

where
Φ0 =

{
(1− |γκ|1−α) tan(πα

2 ) α ̸= 1
− 2

π
log |γκ| α = 1 . (C.14)

This form (S(α, ζ, γ, δ; 0)) is continuous at α = 0. Note that this form is the
one used in MATLAB.

4. Feller’s parameterization: ((Sato et al., 1999; Feller, 1962; Gorenflo and Mainardi,
1999; Takayasu, 1990; Mainardi, Luchko, and Pagnini, 2007)) A random vari-
ableX is stable if and only ifX d= aY+b where 0 < α ≤ 2, θ ≤ min(α, 2−α), a ̸=

2The parameter ζ is usually called β but β is used to describe another parameter in this work.
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0, b ∈ R and Y is a random variable with characteristic function

E(exp (iκY )) = exp(iψθ
α(κ)), (C.15)

where ψθ
α(κ) is given by (C.3). It is also worth to mention that for b = 0 the

characteristic function of X (which is strictly stable) is given as

E(exp (iκX)) = exp
(
iψθ

α

(
κ

a

))
= exp

(
i|a|αψθ

α (κ)
)
. (C.16)

For the sake of performing simulation using existing methods on MATLAB, we
have to express the Feller’s parameterization in the S(α, ζ, γ, δ; 0) form. First,
we are interested in the strictly stable case (δ = ζγ tan(πα

2 )) so we have

exp(i|a|αψθ
α(κ)) = exp

(
iκζγ tan

(
πα

2

)
− |γκ|α(1− iζ sign(κ)Φ)

)
. (C.17)

The above equation should be correct for any κ ∈ R. Solving them (considering
separate equation for imaginary and real parts) gives

γ = a

(
cos

(
πθ

2

))1/α

ζ = − tan
(
πθ

2

)
cot

(
πα

2

)

δ = ζγ tan
(
πα

2

)
= −a tan

(
πθ

2

)(
cos

(
πθ

2

))1/α

.

(C.18)

C.1.2.2 Fractional order absolute moment

Suppose the characteristic function of random variable X is denoted as φX(κ) =
E[exp(iκX)]. Applying the method described in ((Harvill, 2009)) and using its gen-
eral result (C.20), the fractional order absolute moment of stable distributions are
computed.
Define an auxiliary function ρ(.):

ρ(δ) =
∫ ∞

0
u−(δ+1) sin2(u)du =

{
δ−12δ−1Γ(1− δ) cos(πδ/2), if 0 < δ < 2, δ ̸= 1
π/2, if δ = 1 .

(C.19)

The general result of ((Harvill, 2009)) is:

ρ(δ)E[|X|δ] = −1
4

∫ ∞

0
κ−(δ+1)[φX(2κ) + φX(−2κ)− 2]dκ. (C.20)
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When X is a strictly stable random variable with decomposing the characteristic
function as

φX(κ) = exp{−zpκ
α} and φX(−κ) = exp{−znκ

α}, κ ≥ 0 (C.21)

where,
zp = exp(iθπ/2), zn = exp(−iθπ/2). (C.22)

Then
ρ(δ)E[|X|δ] = 1

δ
2δ−2Γ

(
1− δ

α

)(
zδ/α

p + zδ/α
n

)
. (C.23)

Therefore, the absolute moment of order δ is given as

E[|X|δ] =
Γ
(
1− δ

α

)
cos

(
δπθ
2α

)
Γ(1− δ) cos

(
δπ
2

) . (C.24)

C.1.2.3 Signed fractional order moment

Using the method provided in (Kuruoglu, 2001), the signed absolute moment or order
δ for α-stable distribution is written as follows. For δ ∈ (−2,−1) ∪ (−1, 0) we have

E[X⟨δ⟩] = 1
2π

∞∫
−∞

∞∫
−∞

sign(x)|x|δφX(κ)eiκxdxdκ

= i

π

∞∫
0

∞∫
0

xδ sin(κx)dx (φX(κ)− φ∗
X(−κ)) dt (C.25)

= i

π
Γ(1 + δ) cos

(
δπ

2

) ∞∫
0

κ−1−δ
(
e−καzp − e−καzn

)
dt

= i

π
Γ(1 + δ) cos

(
δπ

2

)[
1
α

Γ
(
− δ
α

)(
z

δ
α
p − z

δ
α
n

)]

= −
Γ
(
1− δ

α

)
sin

(
δπθ
2α

)
Γ(1− δ) sin

(
δπ
2

) . (C.26)

As discussed in (Kuruoglu, 2001), the same result can be generalized to δ ∈ [0, α].
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C.1.3 Lévy stable stochastic processes

A one-dimensional stochastic process {X(t); t ≥ 0} said to be a Lévy process if it
satisfies the following properties:

1. X(0) a.s.= 0.

2. Disjoint increments are mutually independent. It means that for any 0 ≤ t1 <
t2 < · · · < tn < ∞ the increments (X(t2) −X(t1), X(t3) −X(t2), . . . , X(tn) −
X(tn−1)) are mutually independent.

3. Stationary increments: for any s < t,X(t) − X(s) is equal in distribution to
X(t− s).

4. The sample paths are Cádlág ((Billingsley, 2008)), meaning they are almost
surely right-continuous and have left limits at all time points.

A process X(t) is said to be a strictly α− stable process if it is a Lévy process which
also satisfies the scaling (self-similarity) property (i.e., the process (c X(t c−α); t ≥ 0)
has the same distribution as X(t) for every c > 0 denoted as X(t) d= t1/αX(1)
((Kyprianou, 2006)).

One of the main property of a Lévy process is that its characteristic function has the
following form

E[exp(i κX(t))] = exp(tΨ(κ)). (C.27)
This means that the stationary independent increments of process X(t) are i.i.d sam-
ples of a stable distribution. In case of a one dimensional strictly α − stable process
with asymmetric parameter θ, the Ψ(κ) is equal to ψα

θ (κ).

C.1.3.1 Space fractional diffusion

One group of random processes that have a space fractional diffusion are the strictly
α-stable processes. Suppose the random process X(t∗) is a strictly α-stable process for
some 0 < α ≤ 2 and 0 ≤ |θ| ≤ min(α, 2−α). Then, according to (C.27), the diffusion
that is defined as fα,θ(x, t∗) = P{X(t∗) = x|X(0) = 0}, has a Fourier transform equal
to

f̂α,θ(κ, t∗) = exp(−t∗ ψθ
α(κ)), (C.28)

where ψθ
α(κ) is the same function defined at (C.3). Taking the Laplace transform on

t∗, the fractional order PDE of the diffusion is achieved

̂̃
fα,θ(κ, s∗) = 1

s∗ + ψθ
α(κ) , (C.29)
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and then
−ψθ

α(κ) ̂̃fα,θ(κ, s∗) = s∗
̂̃
fα,θ(κ, s∗)− 1. (C.30)

So
∂

∂t∗
fα,θ(x, t∗) = xDα

θ {fα,θ(x, t∗)}, t∗ ≥ 0

fα,θ(x, 0) = δ(x), x ∈ R.
(C.31)

C.1.3.2 Stable subordinator process

A Subordinator process is defined as a Lévy process with non-decreasing sample paths.
Suppose T (t∗) is strictly β-stable3 process for some 0 < β ≤ 1, and θ = −β. It can be
shown that the condition θ = −β (which is only feasible when 0 < β ≤ 1) implies that
the increments of the process T (t∗) are almost surely non-negative, thus here we use
the Laplace transform. The diffusion defined as rβ(t, t∗) = P{T (t∗) = t|T (0) = 0},
has a Laplace transform equal to

r̃β(s, t∗) = exp(−t∗sβ). (C.32)

C.1.3.3 Inverse subordinator

Because T (t∗) is a monotonically increasing function, the inverse process (T∗(t)) is a
well defined function, which could be interpreted as the first hitting time.

T∗(t) = inf{τ |T (τ) ≥ t}, (C.33)

which can be used to write the following properties.

t2 > t1 =⇒ T∗(t2) ≥ T∗(t1),
P(T∗(t) ≤ t∗) = P(T (t∗) ≥ t). (C.34)

Define qβ(t∗, t) = P{T∗(t) = t∗|T∗(0) = 0}. Using the property in (C.34):∫ t∗

0
qβ(t′∗, t)dt′∗ =

∫ ∞

t
rβ(t′, t∗)dt′. (C.35)

So
qβ(t∗, t) = ∂

∂t∗

∫ ∞

t
rβ(t′, t∗)dt′ =

∫ ∞

t

∂

∂t∗
rβ(t′, t∗)dt′. (C.36)

3An α-stable process where α = β

128



Then
q̃β(t∗, s) = −1

s

∂

∂t∗
r̃β(s, t∗) = sβ−1 exp(−t∗sβ). (C.37)

C.1.4 Space-Time fractional diffusion

Suppose X(t∗) is a strictly α-stable process and T (t∗) is a subordinator process. The
process X(t) = X(T∗(t)) is called a subordinated (Leonenko et al., 2014) process if
T∗(t) be the inverse process of the subordinator process (T (t∗)) 4. Define a diffusion
function u(x, t) = P{X(t) = x}, hence a direct result of the definition is

u(x, t) =
∫ ∞

0
fα,θ(x, t∗)qβ(t∗, t)dt∗, (C.38)

where fα,θ(x, t∗) and qβ(t∗, t) defined in previous section. Using the Laplace and
Fourier transform, the aforementioned expression can be simplified

̂̃u(κ, s) =
∫ ∞

0
f̂α,θ(κ, t∗)q̃β(t∗, s)dt∗

=
∫ ∞

0
[exp(−ψθ

α(κ))][sβ−1 exp(−t∗sβ)]dt∗

= sβ−1

sβ + ψθ
α(κ) .

(C.39)

Then,
sβ ̂̃u(κ, s)− sβ−1 = −ψθ

α(κ)̂̃u(κ, s). (C.40)
Thus,

tDβ
∗u(x, t) = xDα

θ u(x, t), u(x, 0) = δ(x), x ∈ R, t ≥ 0, (C.41)
where 0 < α ≤ 2, |θ| ≤ min{α, 2−α} and 0 < β ≤ 1. One important result of (C.39)
is the scaling property of the diffusion function which can be reflected by a single
variable function Kθ

α,β(x)

u(x, t) = t−γu(x/tγ, 1) = t−γKθ
α,β(x/tγ), γ = β/α. (C.42)

The following properties ofKθ
α,β(x) will be used later ((Mainardi, Luchko, and Pagnini,

2007))
Kθ

α,β(−x) = K−θ
α,β(x) (C.43)

4t∗ is named operational time while t is called physical/regular time

129




∫+∞

0 Kθ
α,β(x)xδdx = ρ Γ(1−δ/α)Γ(1+δ/α)Γ(1+δ)

Γ(1−ρδ)Γ(1+ρδ)Γ(1+βδ/α)

−min{α, 1} < ℜ(δ) < α, ρ = α−θ
2α
.

(C.44)

C.2 Proof of Proposition 2

Proof. Using equation (C.38), we write that

E[|X(t)|δ] =
∞∫

−∞

|x|δu(x, t)dx

=
∞∫

−∞

∞∫
0

|x|δfα,θ(x, t∗)qβ(t∗, t)dt∗dx. (C.45)

Now, using the discussion in Section C.1.2.2, and using φX(t∗)(κ) = exp
(
t∗ψ

θ
α(κ)

)
from (C.27) for D = 1, and φX(t∗)(κ) = exp

(
t∗Dψ

θ
α(κ)

)
for D ̸= 1. After substituting

in (C.21), we write that

∞∫
∞

|x|δfα,θ(x, t∗)dx = t
δ
α∗ D

δ
α

Γ
(
1− δ

α

)
cos

(
δπθ
2α

)
Γ(1− δ) cos

(
δπ
2

) . (C.46)

Using (C.46) and (C.37), we continue with the Laplace transform of the time-varying
moment expression in (C.45 as

˜E[|X(t)|δ] =
∞∫

−∞

∞∫
0

|x|δfα,θ(x, t∗)qβ(t∗, s)dt∗dx

=
∞∫

0

t
δ
α∗ D

δ
α

Γ(1− δ
α
) cos

(
δπθ
2α

)
Γ(1− δ) cos

(
δπ
2

) sβ−1 exp
(
−t∗sβ

)
dt∗

= s−(δ β
α

+1)D
δ
α

Γ
(
1− δ

α

)
Γ
(
1 + δ

α

)
cos

(
δπθ
2α

)
Γ(1− δ) cos

(
δπ
2

) . (C.47)

Using the inverse Laplace relation L−1{s−(δ β
α

+1)} = tδ
β
α

Γ(1+δ β
α) , and taking inverse

Laplace transform on both sides in (C.47), we finally write the time-varying moment
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with order δ as

E[|X(t)|δ] = tδ
β
αD

δ
α

Γ
(
1− δ

α

)
Γ
(
1 + δ

α

)
cos

(
δπθ
2α

)
Γ(1− δ)Γ

(
1 + δ β

α

)
cos

(
δπ
2

) . (C.48)

C.3 Proof of Proposition 3

Proof. Using equation (C.38), we write that

E[X(t)⟨δ⟩] =
∞∫

−∞

x⟨δ⟩u(x, t)dx

=
∞∫

−∞

∞∫
0

sign(x)|x|δfα,θ(x, t∗)qβ(t∗, t)dt∗dx. (C.49)

Now, using the discussion in Section C.1.2.3, and using φX(t∗)(κ) = exp
(
t∗ψ

θ
α(κ)

)
from (C.27) for D = 1, and φX(t∗)(κ) = exp

(
t∗Dψ

θ
α(κ)

)
for D ̸= 1. After substituting

in (C.25), we write that

∞∫
∞

sign(x)|x|δfα,θ(x, t∗)dx = −t
δ
α∗ D

δ
α

Γ
(
1− δ

α

)
sin

(
δπθ
2α

)
Γ(1− δ) sin

(
δπ
2

) . (C.50)

Using (C.50) and (C.37), we continue with the Laplace transform of the time-varying
signed moment expression in (C.49 as

˜E[X(t)⟨δ⟩] =
∞∫

−∞

∞∫
0

x⟨δ⟩fα,θ(x, t∗)qβ(t∗, s)dt∗dx

= −
∞∫

0

t
δ
α∗ D

δ
α

Γ
(
1− δ

α

)
sin

(
δπθ
2α

)
Γ(1− δ) sin

(
δπ
2

) sβ−1 exp(−t∗sβ)dt∗

= −s−(δ β
α

+1)D δ
α

Γ
(
1− δ

α

)
Γ
(
1 + δ

α

)
sin

(
δπθ
2α

)
Γ(1− δ) sin

(
δπ
2

) . (C.51)

Using the inverse Laplace relation L−1{s−(δ β
α

+1)} = tδ
β
α

Γ(1+δ β
α

)
, and taking inverse

Laplace transform on both sides in (C.51), we finally write the time-varying signed
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moment with order δ as

E[X(t)⟨δ⟩] = −tδ
β
αD

δ
α

Γ(1− δ
α
)Γ(1 + δ

α
) sin( δπθ

2α
)

Γ(1− δ)Γ(1 + δ β
α
) sin( δπ

2 )
. (C.52)

C.4 Proof of Proposition 4

Proof. Using equation (C.38), we write that

E[log |X(t)|] =
∞∫

−∞

log |x|u(x, t)dx

=
∞∫

−∞

∞∫
0

log |x|fα,θ(x, t∗)qβ(t∗, t)dt∗dx. (C.53)

For writing the log moments, we observe that E[exp(t log |X|)] = E[|X|t], i.e., the
moment generating function of log |X| is the absolute moment of order t. Since we
know the expression for absolute moments of alpha stable distributions from Sec-
tion C.1.2.2, we use the following to write the log moments

E[(log |X|)n] = lim
δ→0

dn

dδn
E[|X|δ].

Using the similar procedure as mentioned in (Kuruoglu, 2001), we can write that

E[|X|δ] = c(δ)KδΓ
(

1− δ

α

)
cos(δR), (C.54)

where,

c(δ) = Γ(1 + δ)sinc
(
πδ

2

)
, K = (t∗D) δ

α , R = πθ

2α. (C.55)

We then write that
d

dδ
E[|X(t∗)|δ] = h(δ)E[|X(t∗)|δ], (C.56)

where,

h(δ) = 1
α

log(t∗D) + c′(δ)
c(δ) −

1
α
ψ(0)

(
1− δ

α

)
−R tan(δR),
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and we have used the polygamma function as

ψ(n−1)(x) = dn

dxn
log(Γ(x))

Therefore, the expected log moment is written as

E[log |X(t∗)|] = h(0) = 1
α

log(t∗D) + ψ(0)(1)
(

1− 1
α

)
. (C.57)

Using (C.57) and (C.37), we continue with the Laplace transform of the time-varying
log moment expression in (C.53) as

˜E[log |X(t)|] =
∞∫

−∞

∞∫
0

log |x|fα,θ(x, t∗)qβ(t∗, s)dt∗dx

=
∞∫

0

( 1
α

log(t∗D) + ψ(0)(1)
(

1− 1
α

))
sβ−1 exp

(
−t∗sβ

)
dt∗.(C.58)

Now, using the Euler-Mascheroni constant and the following integral expression
∞∫

0

log(x)e−xdx = −γ,

we can write the Laplace of the log moment as

˜E[log |X(t)|] =
(

log(D)
α

+ ψ(0)(1)(1− 1
α

)− γ

α

)
1
s
− β

αs
log(s). (C.59)

Inverting the Laplace transform in (C.59) using the identity L−1
{

log(s)
s

}
= −γ−log(t),

and using the fact that ψ(0)(1) = −γ, we have

E[log |X(t)|] = β

α
log(t) + log(D)

α
+ γ

(
β

α
− 1

)
. (C.60)
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C.5 Proof of Proposition 5

Proof. Using the similar approach as in proof of the Proposition 3 and as derived in
(Kuruoglu, 2001), we can write that

var(log |X(t∗)|) = ψ(1)(1)
(

1
2 + 1

α

2)
−
(
πθ

2α

)2

. (C.61)

Using the expression in (C.61), we can write the Laplace of the variance of log absolute
values as

˜var(log |X(t)|) =
∞∫

−∞

var(log |X(t)|)qβ(t∗, s)dt∗

=
∞∫

−∞

ψ(1)(1)
(

1
2 + 1

α

2)
−
(
πθ

2α

)2
 sβ−1 exp

(
−t∗sβ

)
dt∗

(a)= π2

6

(
1
2 + 1

α

2)
−
(
πθ

2α

)2

, (C.62)

where in (a) we substitute the value of polygamma function ψ(1)(1) = π2/6.

C.6 Proof of Proposition 6

Proof. Using equation (C.38), we write that

E[(log |X(t)|)2] =
∞∫

−∞

(log |x|)2u(x, t)dx

=
∞∫

−∞

∞∫
0

(log |x|)2fα,θ(x, t∗)qβ(t∗, t)dt∗dx. (C.63)

Using the similar approach as in the proof of the Proposition 3, we can write the
second moment of the log absolute values of X(t∗), using (C.57) and (C.61), as the
following

E[(log |X(t∗)|)2] = (E[log |X(t∗)|])2 + var(log |X(t∗)|)

= 1
α2 (log(t∗))2 + 2c

α
log(t∗) + k, (C.64)
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where, c = log(D)
α

+ γ(β
α
− 1) and k = c2 + π2

6 (1
2 + 1

α

2) − (πθ
2α

)2. Using the expression
in (C.64), we can write the Laplace of the second moment of the log absolute values
as the following

˜E[(log |X(t)|)2] =
∞∫

−∞

∞∫
0

(log |x|)2fα,θ(x, t∗)qβ(t∗, s)dt∗dx

=
∞∫

0

( 1
α2 (log(t∗))2 + 2c

α
log(t∗) + k

)
sβ−1 exp

(
−t∗sβ

)
dt∗.(C.65)

Now, using the Euler-Mascheroni constant and the following integral expressions
∞∫

0

log(x)e−xdx = −γ,
∞∫

0

log2(x)e−xdx = γ2 + π2

6 ,

we can write the Laplace of the second log moment as

˜E[(log |X(t)|)2] =
(
k − 2c

γ
+ 1
α2

(
γ2 + π2

6

))
1
s

+
(

2βγ
α2 −

2βc
α

)
log(s)
s

+β2

α2
log2(s)
s

. (C.66)

Inverting the Laplace transform in (C.66) using the identity L−1
{

log(s)
s

}
= −γ−log(t),

L
{
log2(t)

}
= 1

s

(
γ2 + π2

6

)
+ 2γ log(s)

s
+ log2(s)

s
, we have

E[(log |X(t)|)2] = β2

α2 log2(t) + 2βγ
α

(
β

α
− 1

)
log(t) + c1, (C.67)

where c1 = π2

6

(
1

α2 + 1
2

)
−
(

πθ
2α

)2
+
(

log(D)
α

+ γ
(

β
α
− 1

))2
+ π2

6α2 (1− β2).
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Appendix D

Multiwavelet-based Operator

D.1 Preliminaries

D.1.1 Orthogonal Polynomials

The next set of ingredients that are useful to us are the family of orthogonal polynomi-
als (OPs). Specifically, the OPs in the current work will serve as the mother wavelets
or span the ’mother subspace’ (see Section D.1.2). Therefore, we are interested in the
OPs that are non-zero over a finite domain, and are zero almost everywhere (a.e.).
For a given measure µ that defines the OPs, a sequence of OPs P0(x), P1(x), . . . satisfy
deg(Pi) = i, and ⟨Pi, Pj⟩µ = 0, ∀i ̸= j, where ⟨Pi, Pj⟩µ =

∫
Pi(x)Pj(x)dµ. Therefore,

sequence of OPs are particularly useful as they can act as a set of basis for the space
of polynomials with degree ¡ d by using P0, . . . , Pd−1(x).

The popular set of OPs are hypergeometric polynomials (also known as Jacobi polyno-
mials). Among them, the common choices are Legendre, Chebyshev, and Gegenbauer
(which generalize Legendre and Chebyshev) polynomials. These polynomials are de-
fined on a finite interval of [−1, 1] and are useful for the current work. The other
set of OPs are Laguerre, and Hermite polynomials which are defined over non-finite
domain. Such OPs could be used for extending the current work to non-compact
wavelets. We now review some defining properties of the Legendre and Chebyshev
polynomials.
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D.1.1.1 Legendre Polynomials

The Legendre polynomials are defined with respect to (w.r.t.) a uniform weight
function wL(x) = 1 for −1 ≤ x ≤ 1 or wL(x) = 1[−1,1](x) such that

1∫
−1

Pi(x)Pj(x)dx =


2
2i+1 i = j,

0 i ̸= j.
(D.1)

For our purpose, we shift and scale the Legendre polynomials such that they are
defined over [0, 1] as Pi(2x−1), and the corresponding weight function as wL(2x−1).

Derivatives: The Legendre polynomials satisfy the following recurrence relationships

iPi(x) = (2i− 1)xPi−1(x)− (i− 1)Pi−2(x),
(2i+ 1)Pi(x) = P ′

i+1(x)− P ′
i−1(x),

which allow us to express the derivatives as a linear combination of lower-degree
polynomials itself as follows:

P ′
i (x) = (2i− 1)Pi−1(x) + (2i− 3)Pi−1(x) + . . . , (D.2)

where the summation ends at either P0(x) or P1(x), with P0(x) = 1 and P1(x) = x.

Basis: A set of orthonormal basis of the space of polynomials with degree < d defined
over the interval [0, 1] is obtained using shifted Legendre polynomials such that

ϕi =
√

2i+ 1Pi(2x− 1),

w.r.t. weight function w(x) = wL(2x− 1), such that

⟨ϕi, ϕj⟩µ =
∫ 1

0
ϕi(x)ϕj(x)dx = δij.

D.1.1.2 Chebyshev Polynomials

The Chebyshev polynomials are two sets of polynomial sequences (first, second order)
as Ti, Ui. We take the polynomial of the first order Ti(x) of degree i which is defined
w.r.t. weight function wCh(x) = 1/

√
1− x2 for −1 ≤ x ≤ 1 as

1∫
−1

Ti(x)Tj(x) 1√
1− x2

dx =


π i = j = 0,
π/2 i = j > 0,
0 i ̸= j.

(D.3)
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After applying the scale and shift to the Chebyshev polynomials such that their
domain is limited to [0, 1], we get Ti(2x − 1) and the associated weight function as
wCh(2x− 1) such that Ti(2x− 1) are orthogonal w.r.t. wCh(2x− 1) over the interval
[0, 1].

Derivatives: The Chebyshev polynomials of the first order satisfy the following
recurrence relationships

2Ti(x) = 1
i+ 1T

′
i+1(x)− 1

i− 1T
′
i−1(x), i > 1,

Ti+1(x) = 2xTi(x)− Ti−1(x),

The derivative of the Ti(x) can be written as the following summation of sequence of
lower degree polynomials

T ′
i (x) = i(2Ti−1(x) + 2Ti−3(x) + . . .),

where the series ends at either T0(x) = 1, or T1(x) = x. Alternatively, the derivative
of Ti(x) can also be written as T ′

i (x) = iUi−1(x), where Ui(x) is the second-order
Chebyshev polynomial of degree i.

Basis: A set of orthonormal basis of the space of polynomials of degree up to d and
domain [0, 1] is obtained using Chebyshev polynomials as

ϕi =


2√
π
Ti(2x− 1) i > 0,√

2
π

i = 0.

w.r.t. weight function wCh(2x− 1), or

⟨ϕi, ϕj⟩µ =
∫ 1

0
ϕi(x)ϕj(x)wCb(2x− 1)dx = δij.

Roots: Another useful property of Chebyshev polynomials is that they can be ex-
pressed as trigonometric functions; specifically, Tn(cos θ) = cos(nθ). The roots of
such are also well-defined in the interval [−1, 1]. For Tn(x), the n roots x1, . . . , xn are
given by

xi = cos
(
π

n

(
i− 1

2

))
.
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D.1.2 Multiwavelets

The multiwavelets, as introduced in (Alpert, 1993), exploit the advantages of both
wavelets as well as OPs (Section D.1.1). For a given function f , instead of projecting
the function onto a single wavelet function (wavelet transform), the multiwavelets
go one step further and projects the function onto a subspace of degree-restricted
polynomials. Along the essence of the wavelet-transform, in multiwavelets, a sequence
of wavelet bases are constructed which are scaled/shifted version of the basis of the
coarsest scale polynomial subspace.

In this work, we present a measure-version of the multiwavelets which opens-up a
family of the multiwavelet-based models for the operator learning. In Section D.2.1,
we provide a detailed mathematical formulation for developing multiwavelets using
any set of OPs with measures which can be non-uniform. To be able to develop
compactly supported multiwavelets, we have restricted ourself to the family of OPs
which are non-zero only over a finite interval. The extension to non-compact wavelets
could be done by using OPs which are non-zero over complete/semi range of the real-
axis (for example, Laguerre, Hermite polynomials). As an example, we present the
expressions for Legendre polynomials which use uniform measure in Section D.2.2,
and Chebyshev polynomials which use non-uniform measure in Section D.2.3. The
work can be readily extended to other family of OPs like Gegenbauer polynomials.

D.1.3 Measures, Basis, and Projections

Measures: The functions are expressed w.r.t. basis usually by using measures µ
which could be non-uniform in-general. Intuitively, the measure provides weights to
different locations over which the specified basis are defined. For a measure µ, let
us consider a Radon-Nikodym derivative as w(x) := dµ

dλ
(x), where, dλ := dx is the

Lebesgue measure. In other words, the measure-dependent integrals
∫
fdµ(x), can

now be defined as
∫
f(x)w(x)dx.

Basis: A set of orthonormal basis w.r.t. measure µ, are ϕ0, . . . , ϕk−1 such that
⟨ϕi, ϕj⟩µ = δij. With the weighting function w(x), which is a Radon-Nikodym deriva-
tive w.r.t. Lebesgue measure, the orthonormality condition can be re-written as∫
ϕi(x)ϕj(x)w(x)dx = δij.

The basis can also be appended with a multiplicative function called tilt χ(x) such
that for a set of basis ϕi which is orthonormal w.r.t. µ with weighting function
dµ
dλ

(x) = w(x), a new set of basis ϕiχ are now orthonormal w.r.t. a measure having
weighting function w/χ2. We will see that for OPs like Chebyshev in Section D.2.3,
a proper choice of tilt χ(x) simplifies the analysis.
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Projections: For a given set of basis ϕi defined w.r.t. measure µ and corresponding
weight function w(x), the inner-products are defined such that they induce a measure-
dependent Hilbert space structure Hµ. Next, for a given function f such that f ∈ Hµ,
the projections onto the basis polynomials are defined as ci =

∫
f(x)ϕi(x)w(x)dx.

D.1.4 Gaussian Quadrature

The Gaussian quadrature are the set of tools which are useful in approximating the
definite integrals of the following form

∫ b

a
f(x)w(x)dx ≈

n∑
i=1

ωif(xi), (D.4)

where, ωi are the scalar weight coefficients, and xi are the n locations chosen appro-
priately. For a n-point quadrature, the eq. (D.4) is exact for the functions f that are
polynomials of degree ≤ 2n − 1. This is particularly useful to us, as we see in the
Section D.2.

From the result in (Stoer et al., 2002), it can be argued that, for a class of OPs Pi

defined w.r.t. weight function w(x) over the interval [a, b] such that x1, x2, . . . , xn are
the roots of Pn, if

n∑
i=1

ωiPk(xi) =
||P0||2µ k = 0,

0 k > 0,

then,
n∑

i=1
ωif(xi) =

∫ b

a
f(x)w(x)dx,

for any f such that f is a polynomial of degree ≤ 2n− 1. The weight coefficients can
also be written in a closed-form expression (Abramowitz and Stegun, 1965) as follows

ωi = an

an−1

∫ b
a P

2
n−1(x)w(x)dx

P ′
n(xi)Pn−1(xi)

, (D.5)

where, an is the coefficient of xn in Pn. Thus, the integral in (D.4) can be computed
using family of OPs defined w.r.t. weight function w(x). Depending on the class of
OPs chosen, the Gaussian quadrature formula can be derived accordingly using eq.
(D.5). For a common choice of OPs, the corresponding name for the Quadrature is
’Gaussian-Legendre’, ’Gaussian-Chebyshev’, ’Gaussian-Laguerre’, etc.
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D.1.5 Gram-Schmidt Orthogonalization

The Gram-Schmidt Orthogonalization (GSO) is a common technique for deriving a
(i) set of vectors in a subspace, orthogonal to an (ii) another given set of vectors. We
briefly write the GSO procedure for obtaining a set of orthonormal polynomials w.r.t.
measures which in-general is different for polynomials in set (i) and (ii). Specifically,
we consider that for a given subspace of polynomials with degree < k as V0 and
another subspace of polynomials with degree < k V1, such that V0 ⊂ V1, we wish to
obtain a set of orthonormal basis for the subspace of polynomials with degree < k W0,
such that V0 ⊥ W0 and W0 ⊂ V1. It is apparent that, if dim(W0) = n, dim(V0) = m
and dim(V1) = p, then m+ n ≤ p.

Let (ψ0, . . . , ψn−1) be a set of basis of the polynomial subspace W0, (ϕ(0)
0 , . . . , ϕ

(0)
m−1)

be a set of basis for V0, and (ϕ(0)
1 , . . . , ϕ

(1)
p−1) be a set of basis for V1. We take that

basis ψi and ϕ
(0)
i are defined w.r.t. same measure µ0, while ϕ(1)

i are defined w.r.t. a
different measure µ1. A set of ψi can be obtained by iteratively applying the following
procedure for i = 0, 1, . . . , n− 1

ψi ← ϕ
(1)
i −

∑m−1
j=0 ⟨ϕ

(1)
i , ϕ

(0)
j ⟩µ0ϕ

(0)
j −

∑i−1
l=0⟨ϕ

(i)
i , ψl⟩µ0ψl,

ψi ←
ψi

||ψi||µ0

.
(D.6)

The procedure in (D.6) results in a set of orthonormal basis ofW0 such that ⟨ψi, ψj⟩µ0 =
δij as well as ⟨ψi, ϕ

(0)
j ⟩µ0 , ∀ 0 ≤ i < n, 0 ≤ j < m. We will see in Section D.2 that the

inner-product integrals in eq. (D.6) can be efficiently computed using the Gaussian
Quadrature formulas (as discussed in Section D.1.4).

D.2 Derivations for Multiwavelet Filters

Using the mathematical preliminaries and tools discussed in the Sections D.1, we
are now in shape to present a detailed derivations for the measure dependent multi-
wavelet filters. We start with deriving the general filters expressions in Section D.2.1.
Particular expressions for Legendre polynomials are presented in Section D.2.2, and
then for Chebyshev polynomials in Section D.2.3.
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D.2.1 Filters as Subspace Projection Coefficients

The ‘multiwavelet filters’ play the role of transforming the multiwavelet coefficients
from one scale to another. Let us revisit the Section 5.1.2, where we defined a space of
piecewise polynomial functions, for k ∈ N and n ∈ Z+ ∪ {0} as, Vk

n. The dim(Vk
n) =

2nk, and for subsequent n, each subspace is contained in another, i.e, V k
n−1 ⊂ V k

n .
Now, if ϕ0, . . . , ϕk−1 are a set of basis polynomials for V k

0 w.r.t. measure µ0, then
we know that a set of basis for V k

1 can be obtained by scale and shift of ϕi as ϕ1
jl =

21/2ϕj(2x− l) l = 0, 1, and the measure accordingly as µ1. For a given function f , its
multiwavelet coefficients for projections over V k

0 are taken as s0
0i = ⟨f, ϕi⟩)µ0 and for

V k
1 is taken as s1

li = ⟨f, ϕ1
il⟩µ1 , and, we are looking for filter coefficients (H) such that

a transformation between projections at these two consecutive scale exists, or

s0
0i =

∑
l=0,1

∑k−1
j=0 H

(l)
ij s

1
lj. (D.7)

Let us begin by considering a simple scenario. Since, V k
0 ⊂ V k

1 , the basis are related
as

ϕi =
∑k−1

j=0 α
(0)
ij

√
2ϕj(2x) +

∑k−1
j=0 α

(1)
ij

√
2ϕj(2x− 1). (D.8)

It is straightforward to see that if ϕi and ϕ1
il are defined w.r.t. same measure, or µ0 =

µ1 almost everywhere (a.e.), then the filters transforming the multiwavelet coefficients
from higher to lower scale, are exactly equal to the subspace mapping coefficients
α

(0)
ij , α

(1)
ij ( by taking inner-product with f on both sides in (D.8)). However, this is not

the case in-general, i.e., the measures w.r.t. which the basis are defined at each scale
are not necessarily same. To remedy this issue, and to generalize the multiwavelet
filters, we now present a general measure-variant version of the multiwavelet filters.

We note that, solving for filters H that satisfy eq. (D.7) indeed solves the general
case of n + 1 → n scale, which can be obtained by a simple change of variables
as sn

l,i = ∑k−1
j=0 H

(0)
ij s

n+1
2l,j + ∑k−1

j=0 H
(1)
ij s

n+1
2l+1,j. Now, for solving (D.7), we consider the

following equation

ϕi(x)dµ0

dλ
(x) =

k−1∑
j=0

H
(0)
ij

√
2ϕj(2x)dµ1

dλ
(x) +

k−1∑
j=0

H
(1)
ij

√
2ϕj(2x− 1)dµ1

dλ
(x), (D.9)

where dµ
dλ

is the Radon-Nikodym derivative as discussed in Section D.1.3, and we have
also defined dλ := dx. We observe that eq. (D.7) can be obtained from (D.9) by
simply integrating with f on both sides.

Next, we observe an important fact about multiwavelets (or wavelets in-general) that
the advantages offered by multiwavelets rely on their ability to project a function
locally. One way to achieve this is by computing basis functions which are dila-
tion/translations of a fixed mother wavelet. However, the idea can be generalized by
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projecting a given function onto any set of basis as long as they capture the locality.
A possible approach to generalize is by using a tilt variant of the basis at higher
scales, i.e., using

√
2ϕ̃i(2x) =

√
2ϕi(2x)χ0(x), and

√
2ϕ̃i(2x−1) =

√
2ϕi(2x−1)χ1(x)

such that
√

2ϕ̃i(2x) are now orthonormal w.r.t. weighting function w(2x)/χ2
0(x), and

similarly
√

2ϕ̃i(2x − 1) w.r.t. w(2x − 1)/χ2
1(x). By choosing χ0(x) = w(2x)/w(x),

and χ1(x) = w(2x− 1)/w(x), and taking the new tilted measure µ̃1 such that

µ̃1([0, 1]) =
∫ 1/2

0

w(2x)
χ2

0(x) dλ(x) +
∫ 1

1/2

w(2x− 1)
χ2

1(x) dλ(x),

or,

dµ̃1

dλ
(x) =


w(2x)
χ2

0(x) 0 ≤ x ≤ 1/2,
w(2x−1)

χ2
1(x) 1/2 < x ≤ 1.

We re-write the eq. (D.9), by substituting ϕi(2x)← ϕ̃i(2x), ϕi(2x− 1)← ϕ̃i(2x− 1)
and µ1 ← µ̃1, in its most useful form for the current work as follows

ϕi(x)w(x) =
k−1∑
j=0

H
(0)
ij

√
2ϕj(2x)w(x) +

k−1∑
j=0

H
(1)
ij

√
2ϕj(2x− 1)w(x),

or,

ϕi(x) =
k−1∑
j=0

H
(0)
ij

√
2ϕj(2x) +

k−1∑
j=0

H
(1)
ij

√
2ϕj(2x− 1), (a.e.). (D.10)

Thus, filter coefficients can be looked upon as subspace projection coefficients, with
a proper choice of tilted basis. Note that eq.(D.14) is now equivalent to (D.8) but
is an outcome of a different back-end machinery. Since,

√
2ϕi(2x),

√
2ϕi(2x − 1) are

orthonormal basis for V k
1 , we have

2
∫ 1/2

0
ϕi(2x)ϕj(2x)w(2x)dx = δij,

2
∫ 1

1/2
ϕi(2x− 1)ϕj(2x− 1)w(2x− 1)dx = δij,

and hence we obtain the filter coefficients as follows

H
(0)
ij =

√
2
∫ 1/2

0
ϕi(x)ϕj(2x)w(2x)dx, (D.11)

H
(1)
ij =

√
2
∫ 1

1/2
ϕi(x)ϕj(2x− 1)w(2x− 1)dx. (D.12)

For a given set of basis of V k
0 as ϕ0, . . . , ϕk−1 defined w.r.t. measure/weight function

w(x), the filter coefficients H can be derived by solving eq. (D.10). In a similar
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way, if ψ0, . . . , ψk−1 is the basis for the multiwavelet subspace W k
0 w.r.t. measure µ0

such that V k
0
⊕
W k

0 = V k
1 , and the projection of function f over W k

0 is denoted by
d0

0,i = ⟨f, ψi⟩µ0 , then the filter coefficients for obtaining the multiwavelet coefficients
is written as

d0
0i =

∑
l=0,1

∑k−1
j=0 G

(l)
ij s

1
lj. (D.13)

Again using a change of variables, we get dn
l,i = ∑k−1

j=0 G
(0)
ij s

n+1
2l,j +∑k−1

j=0 G
(1)
ij s

n+1
2l+1,j. To

solve for G in (D.13), similar to eq. (D.10), the measure-variant multiwavelet basis
transformation (with appropriate tilt) is written as

ψi(x) =
k−1∑
j=0

G
(0)
ij

√
2ϕj(2x) +

k−1∑
j=0

G
(1)
ij

√
2ϕj(2x− 1), (a.e.). (D.14)

Similar to eq. (D.11)-(D.12), the filter coefficients G can be obtained from (D.14) as
follows

G
(0)
ij =

√
2
∫ 1/2

0
ψi(x)ϕj(2x)w(2x)dx, (D.15)

G
(1)
ij =

√
2
∫ 1

1/2
ψi(x)ϕj(2x− 1)w(2x− 1)dx. (D.16)

Since ⟨ϕi, ϕj⟩µ0 = δij, ⟨ψi, ψj⟩µ0 = δij and ⟨ϕi, ψj⟩µ0 = 0, therefore, using (D.10),
(D.14), we can write that

∫ 1

0
ϕi(x)ϕj(x)w(x)dx = 2

k−1∑
l=0

k−1∑
l′=0

H
(0)
il H

(0)
jl′

∫ 1/2

0
ϕl(2x)ϕl′(2x)w(x)dx

+ 2
k−1∑
l=0

k−1∑
l′=0

H
(1)
il H

(1)
jl′

∫ 1

1/2
ϕl(2x− 1)ϕl′(2x− 1)w(x)dx,

(D.17)

∫ 1

0
ψi(x)ψj(x)w(x)dx = 2

k−1∑
l=0

k−1∑
l′=0

G
(0)
il G

(0)
jl′

∫ 1/2

0
ϕl(2x)ϕl′(2x)w(x)dx

+ 2
k−1∑
l=0

k−1∑
l′=0

G
(1)
il G

(1)
jl′

∫ 1

1/2
ϕl(2x− 1)ϕl′(2x− 1)w(x)dx,

(D.18)

0 = 2
k−1∑
l=0

k−1∑
l′=0

H
(0)
il G

(0)
jl′

∫ 1/2

0
ϕl(2x)ϕl′(2x)w(x)dx
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+ 2
k−1∑
l=0

k−1∑
l′=0

H
(1)
il G

(1)
jl′

∫ 1

1/2
ϕl(2x− 1)ϕl′(2x− 1)w(x)dx. (D.19)

Let us define filter matrices as H(l) = [H(l)
ij ] ∈ Rk×k and G(l) = [G(l)

ij ] ∈ Rk×k for
l = 0, 1. Also, we define correction matrices as Σ(0) = [Σ(0)

ij ],Σ(1) = [Σ(1)
ij ] such that

Σ(0)
ij = 2

∫ 1/2

0
ϕi(2x)ϕj(2x)w(x)dx,

Σ(1)
ij = 2

∫ 1

1/2
ϕi(2x− 1)ϕj(2x− 1)w(x)dx.

(D.20)

Now, we can write that

H(0)Σ(0)H(0) T +H(1)Σ(1)H(1) T = I,

G(0)Σ(0)G(0) T +G(1)Σ(1)G(1) T = I,

H(0)Σ(0)G(0) T +H(1)Σ(1)G(1) T = 0.
(D.21)

Rearranging eq. we can finally express the relationships between filter matrices and
correction matrices as follows[

H(0) H(1)

G(0) G(1)

] [
Σ(0) 0

0 Σ(1)

] [
H(0) H(1)

G(0) G(1)

]T

= I. (D.22)

The discussion till now is related to ‘decomposition’ or transformation of multiwavelet
transform coefficients from higher to lower scale. However, the other direction, i.e.,
‘reconstruction’ or transformation from lower to higher scale can also be obtained
from (D.22). First, note that the general form of eq. (D.7), (D.13) can be written in
the matrix format as

sn
l = H(0)sn+1

2l +H(1)sn+1
2l+1,

dn
l = G(0)sn+1

2l +G(1)sn+1
2l+1.

(D.23)

Next, we observe that Σ(0),Σ(1) ≻ 0, which follows from their definition. Therefore,
eq. (D.22) can be inverted to get the following form

[
H(0) H(1)

G(0) G(1)

] [
H(0) H(1)

G(0) G(1)

]T

=
[
Σ(0) −1 0

0 Σ(1) −1

]
. (D.24)

Finally, by using (D.24), we can essentially invert the eq. (D.23) to get

sn+1
2l = Σ(0)(H(0) T sn

l +G(0) T dn
l ),

sn+1
2l+1 = Σ(1)(H(1) T sn

l +G(1) T dn
l ).

(D.25)
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In the following Section D.2.2,D.2.3 we see the the filters H,G in (D.23), (D.25) for
different polynomial basis.

D.2.2 Multiwavelets using Legendre Polynomials

The basis for V k
0 are chosen as normalized shifted Legendre polynomials of degree upto

k w.r.t. weight function wL(2x − 1) = 1[0,1](x) from Section D.1.1.1. For example,
the first three bases are

ϕ0(x) = 1,
ϕ1(x) =

√
3(2x− 1),

ϕ2(x) =
√

5(6x2 − 6x+ 1), 0 ≤ x ≤ 1.
(D.26)

For deriving a set of basis ψi of W k
0 using GSO, we need to evaluate the integrals

which could be done efficiently using Gaussian quadrature.

Gaussian-Legendre Quadrature: The integrals involved in GSO procedure, and
the computations of H,G can be done efficiently using the Gaussian quadrature as
discussed in Section D.1.4. Since the basis functions ϕi, ψi are polynomials, therefore,
the quadrature summation would be exact. For a given k basis of the subspace
V k

0 , the deg (ϕiϕj) < 2k − 1, as well as deg (ϕiψj) < 2k − 1, therefore a k-point
quadrature would be sufficient for expressing the integrals. Next, we take the interval
[a, b] = [0, 1], and the OPs for approximation in Gaussian quadrature as shifted
Legendre polynomials Pk(2x− 1). The weight coefficients ωi can be written as

ωi = ak

ak−1

∫ 1
0 P

2
k−1(2x− 1)w(2x− 1)dx

P ′
k(2xi − 1)Pk−1(2xi − 1)

= 2k − 1
k

.
1

2k − 1
1

P ′
k(2xi − 1)Pk−1(2xi − 1) = 1

kP ′
k(2xi − 1)Pk−1(2xi − 1) , (D.27)

where xi are the k roots of Pk(2x− 1) and ak can be expressed in terms of ak−1 using
the recurrence relationship of Legendre polynomials from Section D.1.1.1.

A set of basis for V k
1 is
√

2ϕi(2x) and
√

2ϕi(2x−1) with weight functions wL(4x−1) =
1[0,1/2](x) and wL(4x − 3) = 1(1/2,1](x), respectively. We now use GSO procedure as
outlined in Section D.1.5 to obtain set of basis ψ0, . . . , ψk−1 for W k

0 . We use Gaussian-
Legendre quadrature formulas for computing the inner-products. As an example, the
inner-products are computed as follows

⟨
√

2ϕi, ϕj⟩µ0 =
∫ 1

0

√
2ϕi(2x)ϕj(x)wL(2x− 1)dx
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=
√

2
k∑

i=1
ωiϕi(2xi)ϕj(xi),

where ϕi(2xi) = 0 for xi > 0.5.

With shifted Legendre polynomials as basis for V 3
0 , the multiwavelet bases for W 3

0 are

ψ0(x) =
6x− 1 0 ≤ x ≤ 1/2,

6x− 5 1/2 < x ≤ 1,

ψ1(x) =

√

3(30x2 − 14x+ 1) 0 ≤ x ≤ 1/2,√
3(30x2 − 46x+ 17) 1/2 < x ≤ 1,

ψ2(x) =

√

5(24x2 − 12x+ 1) 0 ≤ x ≤ 1/2,√
5(−24x2 + 36x− 13) 1/2 < x ≤ 1.

(D.28)

Next, we compute the filter matrices, but first note that since the weighting func-
tion for Legendre polynomials basis are wL(x) = 1[0,1](x), therefore, Σ(0),Σ(1) in eq.
(D.20) are just identity matrices because of orthonormality of the basis

√
2ϕi(2x) and√

2ϕi(2x − 1) w.r.t. 1[0,1/2](x) and 1[1/2,1](x), respectively. The filter coefficients can
be computed using Gaussian-Legendre quadrature as follows

H
(0)
ij =

√
2
∫ 1/2

0
ϕi(x)ϕj(2x)wL(2x− 1)dx

= 1√
2

∫ 1

0
ϕi(x/2)ϕj(x)dx

= 1√
2

k∑
i=1

ωiϕi

(
xi

2

)
ϕj(xi),

and similarly other coefficients can be obtained in eq. (D.11)-(D.12), (D.15)-(D.16).
As an example, for k = 3, following the outlined procedure, the filter coefficients are
derived as follows

H(0) =


1√
2 0 0

−
√

3
2
√

2
1

2
√

2 0
0 −

√
15

4
√

2
1

4
√

2

 , H(1) =


1√
2 0 0

√
3

2
√

2
1

2
√

2 0
0

√
15

4
√

2
1

4
√

2

 ,

G(0) =


1

2
√

2

√
3

2
√

2 0
0 1

4
√

2

√
15

4
√

2
0 0 1√

2

 , G(1) =


− 1

2
√

2

√
3

2
√

2 0
0 − 1

4
√

2

√
15

4
√

2
0 0 − 1√

2

 .

147



D.2.3 Multiwavelets using Chebyshev Polynomials

We choose the basis for V k
0 as shifted Chebyshev polynomials of the first-order from

degree 0 to k − 1. The weighting function for shifted Chebyshev polynomials is
wCh(2x − 1) = 1

√
1− (2x− 1)2 from Section D.1.1.2. The first three bases using

Chebyshev polynomials are as follows

ϕ0(x) =
√

2/π,

ϕ1(x) = 2√
π

(2x− 1),

ϕ2(x) = 2√
π

(8x2 − 8x+ 1), 0 ≤ x ≤ 1.

The Gaussian quadrature for the Chebyshev polynomials is used to evaluate the
integrals that appears in the GSO procedure as well as in the computations of filters
H,G.

Gaussian-Chebyshev Quadrature: The basis functions ϕi, ψi resulting from the
use of shifted Chebyshev polynomials are also polynomials with degree of their prod-
ucts such that deg(ϕiϕj) < 2k−1 and deg(ϕiψi) < 2k−1, therefore a k-point quadra-
ture would be sufficient for evaluating the integrals that have products of bases. Upon
taking the interval [a, b] as [0, 1], and using the canonical OPs as shifted Chebyshev
polynomials, the weight coefficients are written as

ωi = ak

ak−1

∫ 1
0 T

2
k−1(2x− 1)wCh(2x− 1)dx
T ′

k(2xi − 1)Tk−1(2xi − 1)
(a)= 2π4

1
T ′

k(2xi − 1)Tk−1(2xi − 1)
(b)= π

2k , (D.29)

where xi are the k roots of Tk(2x − 1), (a) is using the fact that an/an−1 = 2 by
using the recurrence relationship of Chebyshev polynomials from Section D.1.1.2, and
assumes k > 1 for the squared integral. For (b), we first note that Tk(cos θ) = cos(kθ),
hence, T ′

k(cos θ) = n sin(nθ)/ sin(θ). Since xi are the roots of Tk(2x − 1), therefore,
2xi − 1 = cos(π

n
(i− 1/2)). Substituting the xi, we get T ′

k(2xi − 1)Tk−1(2xi − 1) = k.

A set of basis for V k
1 is
√

2ϕi(2x) and
√

2ϕi(2x−1) with weight functions wCh(4x−1) =
1/
√

1− (4x− 1)2 and wCb(4x − 3) = 1/
√

1− (4x− 3)2, respectively. We now use
GSO procedure as outlined in Section D.1.5 to obtain set of basis ψ0, . . . , ψk−1 for W k

0 .
We use Gaussian-Chebyshev quadrature formulas for computing the inner-products.
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As an example, the inner-products are computed as follows

⟨
√

2ϕi, ϕj⟩µ0 =
∫ 1

0

√
2ϕi(2x)ϕj(x)wCh(2x− 1)dx

=
√

2 π2k

k∑
i=1

ϕi(2xi)ϕj(xi),

where ϕi(2xi) = 0 for xi > 0.5.

With shifted Chebyshev polynomials as basis for V 3
0 , the multiwavelet bases for W 3

0
are derived as

ψ0(x) =
4.9749x− 0.5560 0 ≤ x ≤ 1/2,

4.9749x− 4.4189 1/2 < x ≤ 1,

ψ1(x) =
58.3516x2 − 22.6187x+ 0.9326 0 ≤ x ≤ 1/2,

58.3516x2 − 94.0846x+ 36.6655 1/2 < x ≤ 1,

ψ2(x) =
59.0457x2 − 23.7328x+ 1.0941 0 ≤ x ≤ 1/2,
−59.0457x2 + 94.3586x− 36.4070 1/2 < x ≤ 1.

(D.30)

Next, we compute the filter and the correction matrices. The filter coefficients can
be computed using Gaussian-Chebyshev quadrature as follows

H
(0)
ij =

√
2
∫ 1/2

0
ϕi(x)ϕj(2x)wCh(4x− 1)dx

= 1√
2

∫ 1

0
ϕi(x/2)ϕj(x)wCh(2x− 1)dx

= π

2
√

2k

k∑
i=1

ϕi

(
xi

2

)
ϕj(xi),

and similarly, other coefficients can be obtained in eq. (D.11)-(D.12), (D.15)-(D.16).
Using the outlined procedure for Chebyshev based OP basis, for k = 3, the filter and
the corrections matrices are derived as

H(0) =


1√
2 0 0
−1

2
1

2
√

2 0
−1

4 −
1√
2

1
4
√

2

 , H(1) =


1√
2 0 0

1
2

1
2
√

2 0
−1

4
1√
2

1
4
√

2

 ,

G(0) =

0.6094 0.7794 0
0.6632 1.0272 1.1427
0.6172 0.9070 1.1562

 , G(1) =

−0.6094 0.7794 0
0.6632 −1.0272 1.1427
−0.6172 0.9070 −1.1562

 ,
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Σ(0) =

 1 −0.4071 −0.2144
−0.4071 0.8483 −0.4482
−0.2144 −0.4482 0.8400

 , Σ(1) =

 1 0.4071 −0.2144
0.4071 0.8483 0.4482
−0.2144 0.4482 0.8400

 .
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Appendix E

Approximate Submodularity and
Sensor Selection

E.1 Proof of Theorem 6.3

Proof. Let SG be the output of the greedy algorithm and therefore f(Ω∗) ≥ f(SG).
At the ith stage of the algorithm, if Si

G is the selected set then f(Ω∗ ∪ Si
G) can be

expanded in two ways. First we have

f(Ω∗ ∪ Si
G) = f(Ω∗) + fΩ∗(Si

G) = f(Ω∗) +
∑

sj∈Si
G\Ω∗

fΩ∗∪Sj−1
G

(sj)

≥ f(Ω∗) + (1− αG)
∑

sj∈Si
G\Ω∗

fSj−1
G

(sj), (E.1)

where the inequality is written using the definition of greedy curvature from (6.7).
On the other hand, the expansion is as follows

f(Ω∗ ∪ Si
G) = f(Si

G) + fSi
G
(Ω∗). (E.2)

After combining (E.1) and (E.2), we can write that

f(Ω∗) + (1− αG)
∑

sj∈Si
G\Ω∗

fSj−1
G

(sj) ≤
∑

sj∈Si
G

fSj−1
G

(sj) + fSi
G
(Ω∗),

which can be re-written as
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f(Ω∗) ≤ αG

∑
sj∈Si

G

fSj−1
G

(sj) + (1− αG)
∑

sj∈Si
G∩Ω∗

fSj−1
G

(sj) + fSi
G
(Ω∗).

At this point, it should be noted that out of ROS(f, δ), we have chosen g which has
total curvature of αδ. We can upper bound the last term of the above inequality using
(6.3) and use the diminishing returns property of submodular function g to write that

f(Ω∗) ≤ αGf(Si
G) + (1− αG)

∑
sj∈Si

G∩Ω∗

fSj−1
G

(sj) + (1 + δ)
∑

ω∈Ω∗\Si
G

gSi
G
(ω)

≤ αGf(Si
G) + (1− αG)

∑
sj∈Si

G∩Ω∗

fSj−1
G

(sj) + 1 + δ

1− δ
∑

ω∈Ω∗\Si
G

fSi
G
(ω).

The greedy algorithm at the (i+1)th step would select si+1 according to the following

A(i+ 1) = max
a∈Ω\Si

G

fSi
G
(a) = fSi

G
(si+1), (E.3)

where A(i+ 1) is the gain at the (i+ 1)th step. The last term can be upper bounded
by A(i + 1) and let us denote the size of set Si

G ∩ Ω∗ as ti. Subsequently, we can
write that

f(Ω∗) ≤ αGf(Si
G) + (1− αG)

∑
sj∈Si

G∩Ω∗

fSj−1
G

(sj) + 1 + δ

1− δ (k − ti)fSi
G
(si+1)

≤ αGf(Si
G) +

∑
sj∈Si

G∩Ω∗

{
(1− αG)fSj−1

G
(sj)− fSi

G
(si+1)

}
+ k

1 + δ

1− δ fSi
G
(si+1).

where we have used the fact that δ is feasible according to Lemma 6.1 and hence
1+δ
1−δ
≥ 1

γf
≥ 1. The summation term in the above inequality can be upper-bounded

by 0 using the definition of greedy curvature from (6.7) and we obtain

f(Ω∗) ≤ αGf(Si
G) + k

1 + δ

1− δfSi
G
(si+1). (E.4)

We shall now upperbound the greedy curvature in terms of αδ. In that process, we
can write that

152



min
a∈SG\(Si−1

G ∪Ω∗)

fSi−1
G ∪Ω∗(a)
fSi−1

G
(a) ≥ 1− δ

1 + δ
min

a∈SG\(Si−1
G ∪Ω∗)

gSi−1
G ∪Ω∗(a)
gSi−1

G
(a)

≥ 1− δ
1 + δ

min
a∈Ω

gΩ\a(a)
g(a) = 1− δ

1 + δ
(1− αδ), (E.5)

where the first inequality is written using (6.3) and second inequality is using the
property of submodular functions. The last equality is using the definition of total
curvature from (6.5). Using the similar approach, we can again write that

min
a∈(SG∩Ω∗)\Si−1

G
i≤j≤k

fSj−1
G

(sj)
fSi−1

G
(a) ≥ min

a∈(SG∩Ω∗)\Si−1
G

i≤j≤k

fSj−1
G

(a)
fSi−1

G
(a)

≥ 1− δ
1 + δ

min
a∈(SG∩Ω∗)\Si−1

G
i≤j≤k

gSj−1
G

(a)
gSi−1

G
(a)

≥ 1− δ
1 + δ

min
a∈(SG∩Ω∗)\Si−1

G
i≤j≤k

gΩ\a(a)
g(a)

≥ 1− δ
1 + δ

min
a∈Ω

gΩ\a(a)
g(a) = 1− δ

1 + δ
(1− αδ). (E.6)

Using the equation (E.5), (E.6) and (6.7), we can now conclude that αG ≤ 2δ
1+δ

+ 1−δ
1+δ

αδ.
Therefore, equation (E.4) can now be written as

f(Ω∗) ≤
(

2δ
1 + δ

+ 1− δ
1 + δ

αδ

)
f(Si

G) + k
1 + δ

1− δ fSi
G
(si+1). (E.7)

The equation (E.7) is of the form of λui+1 ≥ c −∑i
j=1 uj, which has the solution of

the form ∑k
i=1 ui ≥ c(1− (1− 1

λ
)k) using simple mathematical induction. Therefore,

we can write

f(SG) =
k∑

i=1
A(i)

≥ 1
2δ

1+δ
+ 1−δ

1+δ
αδ

1−
(

1− 1
k

(
2δ

1 + δ
+ 1− δ

1 + δ
αδ

)(
1− δ
1 + δ

))k
OPT

≥ 1
2δ

1+δ
+ 1−δ

1+δ
αδ

(
1− e−( 2δ

1+δ
+ 1−δ

1+δ
αδ) 1−δ

1+δ

)
OPT. (E.8)
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E.2 Proofs of the Propositions in Section 6.2

The proofs of the Propositions stating δ-approximation of non-submodular functions
are described in this Section. In each proof, with f denoting non-submodular function
and g being submodular, we will establish the inequality of the form of

gS(a)δl ≤ fS(a) ≤ δugS(a),

to get the expressions for δl and δu.

E.2.1 Proposition 7

Proof. For the matrix of the form of WS = Λ0 + ∑
s∈S xsxT

s or any Gramian, with
ordered eigenvalues λn ≥ . . . ≥ λ2 ≥ λ1, we consider a submodular function g(S) =
log det(WS). The marginal of g can be written as

gS(a) = log det(WS∪{a})− log det(WS)

=
n∑

i=1
log

(
λi(WS∪{a})
λi(WS)

)
. (E.9)

The marginal of the considered non-submodular function, f(S) = −tr(W−1
S ) can be

written as

fS(a) = −tr(W−1
S∪{a}) + tr(W−1

S )

=
n∑

i=1
− 1
λi(WS∪{a})

+ 1
λi(WS) =

n∑
i=1

λi(WS∪{a})− λi(WS)
λi(WS∪{a})λi(WS) . (E.10)

The expression in (E.10) can be upper bounded using the relation 1− 1
x
≤ log(x), x > 0

as

fS(a) ≤
n∑

i=1

1
λi(WS) log

(
λi(WS∪{a})
λi(WS)

)
≤ 1

λ1(Wϕ)

n∑
i=1

log
(
λi(WS∪{a})
λi(WS)

)

= 1
λ1(Wϕ)gS(a), (E.11)
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where we have used (E.9) in the last equality. The marginal of f can be lower bounded
using the relation x− 1 ≥ log(x), x > 0 as follows.

fS(a) ≥
n∑

i=1

1
λi(WS∪{a})

log
(
λi(WS∪{a})
λi(WS)

)
≥ 1

λn(WΩ)

n∑
i=1

log
(
λi(WS∪{a})
λi(WS)

)

= 1
λn(WΩ)gS(a).

E.2.2 Proposition 8

Proof. For the matrix of the form of WS = Λ0 + ∑
s∈S xsx

T
s or any Gramian, we

denote the ordered eigenvalues of XS as λn ≥ . . . ≥ λ2 ≥ λ1. The Weyl’s inequality
for matrices can be written as λi(WS)+λ1(W{a}) ≤ λi(WS∪{a}) ≤ λi(WS)+λn(W{a}).
We consider the submodular function as g1(S) = λn(WS). The considered non-
submodular function, f(S) = λ1(WS) has the marginals which can be bounded using
the Weyl’s inequality as follows:

λ1(W{a}) ≤ fS(a) = λ1(WS∪{a})− λ1(WS) ≤ λn(W{a}). (E.12)

The marginal of the submodular function g1 can be lower bounded as follows.

g1 S(a) = λn(WS∪{a})− λn(WS) ≥ λ1(W{a})

= λ1(W{a})
λn(W{a})

λn(W{a})

≥
(

min
ω∈Ω

λ1(W{ω})
λn(W{ω})

)
λn(W{a})

≥
(

min
ω∈Ω

λ1(W{ω})
λn(W{ω})

)
fS(a).

where in the last inequality we have used (E.12). Similarly, we can upperbound the
marginal of g1 as follows.

g1 S(a) = λn(WS∪{a})− λn(WS) ≤ λn(W{a})

= λn(W{a})
λ1(W{a})

λ1(W{a})

≤
(

max
ω∈Ω

λn(W{ω})
λ1(W{ω})

)
λ1(W{a})
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≤
(

max
ω∈Ω

λn(W{ω})
λ1(W{ω})

)
fS(a).

Therefore, we can bound the marginal of f on the both sides as follows:

1
max
ω∈Ω

λn(W{ω})
λ1(W{ω})

g1 S(a) ≤ fS(a) ≤ 1
min
ω∈Ω

λ1(W{ω})
λn(W{ω})

g1 S(a),

or,
min
ω∈Ω

λ1(W{ω})
λn(W{ω})

g1 S(a) ≤ fS(a) ≤ max
ω∈Ω

λn(W{ω})
λ1(W{ω})

g1 S(a).

E.2.3 Proposition 9

Proof. Similar to the Proof of the Proposition 8, we consider the matrix of the form of
WS = Λ0 +∑

s∈S xsx
T
s or any Gramian, and we denote the ordered eigenvalues of XS

as λn ≥ . . . ≥ λ2 ≥ λ1. Therefore, the Weyl’s inequality for matrices can be written
as λi(WS) + λ1(W{a}) ≤ λi(WS∪{a}) ≤ λi(WS) + λn(W{a}). Also, we have taken the
case of Λ0 = β2IN . We consider the submodular (or modular in this case) function
as g2(S) = tr(WS). The marginal of g2 can be written as g2 S(a) = tr(W{a}). The
marginal of the considered non-submodular function, f(S) = λ1(WS) can be upper
bounded as

fS(a) = λ1(WS∪{a})− λ1(WS) ≤ λn(W{a})

= tr(W{a})

1−

n−1∑
i=1

λi(W{a})
n∑

i=1
λi(W{a})


≤ tr(W{a})

(
1− n− 1

n

λ1(W{a})
λn(W{a})

)

≤ tr(W{a})
(

1− n− 1
n

min
ω∈Ω

λ1(W{ω})
λn(W{ω})

)

= g2 S(a)
(

1− n− 1
n

min
ω∈Ω

λ1(W{ω})
λn(W{ω})

)
,

where in the first inequality we have used the Weyl’s inequality. The marginal of f
can again written to be lower bounded as

fS(a) = λ1(WS∪{a})− λ1(WS) ≥ λ1(W{a})
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≥
λ1(W{a})

n

(
1 + λn−1(W{a})

λn(W{a})
+ . . .+ λ1(W{a})

λn(W{a})

)

= λ1(W{a})tr(W{a})
nλn(W{a})

≥
(

1
n

min
ω∈Ω

λ1(W{ω})
λn(W{ω})

)
tr(W{a})

=
(

1
n

min
ω∈Ω

λ1(W{ω})
λn(W{ω})

)
g2 S(a).
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Appendix F

Fractional Reinforcement Learning

F.1 Proof of Theorem 7.1

For the notational purpose of the proof, we define the non-Markovian environment
as M , and approximation to the environment as M̂ . The non-Markovian MPC based
policy is π̂, and the optimal policy is π∗. The approximation quality of the HDP
dynamics are ||P̂h′(s′|s, a)− Ph(s′|s, a)||1 ≤ O(tq), ∀h, h′ ∈ Ht with h(t) = h′(t) = s,
and the approximation for cost ||c(s, a) − ĉ(s, a)||∞ ≤ ε. We also assume that the
range of cost function is [cmin, cmax]. The initial history information provided is taken
as h0 ∈ H0, for example, initial state s0. We define ĥ(h∗) as the trajectories taken by
policy π̂ (π∗), respectively. We define the value function at step-t (0 ≤ t ≤ T − 1),
with history h using the model M , and policy π as

V π
t,M(h) = Eh,π,M

T −1∑
k=t

γk(sk, ak), (F.1)

where h ∈ Ht and h(t) = st. We first present the simulation lemma for non-Markovian
HDP as follows.

Lemma F.1. Given an approximation M̂ of the environment M as, ||P̂h′(s′|s, a) −
Ph(s′|s, a)||1 ≤ O(tq), ∀h, h′ ∈ Ht with h(t) = h′(t) = s, and the approximation for
cost ||c(s, a)− ĉ(s, a)||∞ ≤ ε, and any policy π and history ht ∈ Ht,

||Eh,π,M̂

t+H−1∑
k=t

γk(sk, ak)− Eh,π,M̂

t+H−1∑
k=t

γk(sk, ak)||∞

≤ γtH
(
cmax − cmin

2

) 1− γH

1− γ O((t+H)q) + εγt 1− γH

1− γ . (F.2)
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Proof. The difference in the value functions can be written as

Eht,π,M̂

t+H−1∑
k=t

γkĉ(sk, ak)− Eht,π,M

t+H−1∑
k=t

γkc(sk, ak)

= Eht,π,M̂

t+H−1∑
k=t

γkĉ(sk, ak)− Eht,π,M̂

t+H−1∑
k=t

γkc(sk, ak)

+ Eht,π,M̂

t+H−1∑
k=t

γkc(sk, ak)− Eht,π,M

t+H−1∑
k=t

γkc(sk, ak).

With ||c(s, a)− ĉ(s, a)||∞ ≤ ε, we can write that

||Eht,π,M̂

t+H−1∑
k=t

ĉ(sk, ak)− Eht,π,M̂

t+H−1∑
k=t

c(sk, ak)||∞

≤ Eht,π,M̂

∑t+H−1
k=t

γkε = ε
1− γH

1− γ .

For the remaining terms, we can write that

Eht,π,M̂

t+H−1∑
k=t

γkc(sk, ak)− Eht,π,M

t+H−1∑
k=t

γkc(sk, ak)

=
 ∑

sk∼ht,π,M̂

P (st, . . . , st+H−1)−
∑

sk∼ht,π,M

P (st, . . . , st+H−1)
×

(
t+H−1∑

k=t

γkc(sk, ak)− δ),

where in the last equality, we can insert δ as∑
sk∼ht,π,M̂

P (st, . . . , st+H−1) =
∑

sk∼ht,π,M

P (st, . . . , st+H−1) = 0.

Next,

||Eht,π,M̂

t+H−1∑
k=t

γkc(sk, ak)− Eht,π,M

t+H−1∑
k=t

γkc(sk, ak)||∞

≤ ||(
∑

sk∼ht,π,M̂

P (st, . . . , st+H−1)−
∑

sk∼ht,π,M

P (st, . . . , st+H−1))||∞×

||
t+H−1∑

k=t

γkc(sk, ak)− δ||∞.
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By choosing δ = ∑t+H−1
k=t γk( cmax+cmin

2 ), and upper-bounding difference of transition
dynamics as O((t+H)q), we get the final expression.

Now, we begin the proof of the Theorem 1 as follows.

V π̂
t,M(ĥt)− V π∗

t,M(h∗
t ) = Eĥt,π̂,M

t+H−1∑
k=t

γkc(sk, ak)− Eh∗
t ,π∗,M

t+H−1∑
k=t

γkc(sk, ak)

+ V π̂
t+H,M(ĥt+H)− V π∗

t+H,M(h∗
t+H).

The first set of terms can be expanded as follows.

Eĥt,π̂,M

t+H−1∑
k=t

γkc(sk, ak)− Eh∗
t ,π∗,M

t+H−1∑
k=t

γkc(sk, ak)

= Eĥt,π̂,M

t+H−1∑
k=t

γkc(sk, ak)− Eĥt,π̂,M̂

t+H−1∑
k=t

γkĉ(sk, ak)

+ Eĥt,π̂,M̂

t+H−1∑
k=t

γkĉ(sk, ak)− Eĥt,π∗,M̂

t+H−1∑
k=t

γkĉ(sk, ak)

+ Eĥt,π∗,M̂

t+H−1∑
k=t

γkĉ(sk, ak)− Eĥt,π∗,M̂

t+H−1∑
k=t

γkc(sk, ak)

+ Eĥt,π∗,M̂

t+H−1∑
k=t

γkc(sk, ak)− Eh∗
t ,π∗,M

t+H−1∑
k=t

γkc(sk, ak).

Since the π̂ is greedy policy that optimize (7.5), therefore,

Eĥt,π̂,M̂

t+H−1∑
k=t

γkĉ(sk, ak) ≤ Eĥt,π∗,M̂

t+H−1∑
k=t

γkĉ(sk, ak). (F.3)

Now, using lemma 1 and the approximation quality of costs, we get

||V π̂
t,M(ĥt)− V π∗

t,M(h∗
t )||∞ ≤ 2γtH

(
cmax − cmin

2

) 1− γH

1− γ O((t+H)q)

+2γtε
1− γH

1− γ + ||V π̂
t+H,M(ĥt+H)− V π∗

t+H,M(h∗
t+H)||∞.

By adding the terms from t = 0 till T − 1, the terms that are H apart cancels out in
a telescopic sum fashion. Finally, we can write that

||V π̂
0,M(h0)− V π∗

0,M(h0)||∞ ≤
T −1∑
t=0

2γtH
(
cmax − cmin

2

) 1− γH

1− γ O((t+H)q)
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+ 2γtε
1− γH

1− γ

≤ 21− γH

1− γ

(
cmax − cmin

2

)
HO(T q)

+ 2ε1− γH

1− γ
1− γT

1− γ .

F.2 Fractional MPC

The fractional MPC in Section 7.2.2 has linear constraints. Define the optimization
variable x = [s̄[k+H]T , s̄[k+H − 1]T , . . . , s̄[0]T , a[k+H − 1]T , . . . , a[k]T ]T . The first
set of constraints can then be written as Θx = b, where

Θ =


I D(α, 1) + A D(α, 2) . . . . . .
0 I D(α, 1) + A D(α, 2) . . .
... ... . . . . . . I D(α, 1) + A . . .

D(α, k +H) B 0 . . . 0
. . . 0 B . . . 0

D(α, k + 1) 0 0 . . . B

 ,
using,

D(α, j) = diag(ψ(α1, j), . . . , ψ(αn, j)). (F.4)
and b = [e[k+H−1]T , . . . , e[k]T , 0T , . . . , 0T ]T . The history equality constraint can be
set as Φx = d with Φ = [0, I, 0] of appropriate size, and d = [0T , . . . , s[k]T , . . . , s[0]T ,
0T , . . . , 0T ]T . Using these two equality constraints, and boundary limits for s̄[k], we
get a quadratic programming with approximated costs ĉ as quadratic function. For
other convex versions of the approximated cost, a convex optimization with the above
linear constraints can be formulated.
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Appendix G

Neuron Particles

G.1 Cantor Spikes

The Cantor spikes concept is used for demonstrating the fractal memory in the spike
trains. The Cantor set is constructed by repeatedly deleting 1/3 of the unit interval.
The extension of Cantor set, Cr is defined such that at any iteration-n, rth ratio is
removed from each subsection. The extended Cantor set Cr with ratio r at each depth
level N has deleted intervals of size r, rδ, rδ2, . . . , rδN−1, where δ = (1 − r)/2. For
example, at depth N = 2, the sequence of deleted intervals is T = rδ, r, rδ. For the
computational purpose, at any depth N , the sequence is generated by constructing a
binary tree with root node having weight r, and each child (left and right) is assigned
a weight of (1 − r)/2 times the weight of its parent. The sequence T is obtained
by traversing the binary tree with left child first rule. We note that, for each depth
N , the neuron particles can be analytically identified as r, rδ, rδ2, . . . , rδN−1. The
fractality of Cantor sets (and hence cantor spikes) is analytically captured via box
counting dimension (35). The box counting dimension for set A is defined as

dimbox = lim
ϵ→0

− log(N(ϵ))
log(ϵ) , (G.1)

where, N(ϵ) are the number of boxes with diameter ϵ required to cover the set A. At
iteration-n, there are 2n resulting sub-intervals, each of size ((1 − r)/2)n, therefore,
the box-dimension is written as

dimbox = lim
n→∞

log 2n

− log(1−r
2 )n

(G.2)
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= − log 2
log((1− r)/2) (G.3)
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